Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
Классический арканоид для любителей ретро-игр. Защитите космический корабль с Печенькой (и не только) на борту, проходя уровни в арканоиде.

Арканоид Пикабу

Арканоид, Аркады, Веселая

Играть

Топ прошлой недели

  • AlexKud AlexKud 38 постов
  • SergeyKorsun SergeyKorsun 12 постов
  • SupportHuaport SupportHuaport 5 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня

IT + Микроконтроллеры

С этим тегом используют

Программирование IT юмор Программист Юмор Работа Картинка с текстом Разработка Электроника Arduino Своими руками Stm32 Самоделки Радиолюбители Все
19 постов сначала свежее
23
Gray.Mage
8 дней назад

Ответ на пост «Сервер за копейки»⁠⁠2

Имеем 2 блейд сервера

С каждого снимаем и продаем на авито

9 шт ddr ecc reg ddr3 по 300р = 2700р

2 шт sas 300gb по 250р = 500р

2 шт e5645 по 300р = 600р

Итого 3800р *2 = 7600р

Добавляем деньги на покупку фирменного разъема и sfp модуля. Блока питания 12в. Ну пусть еще 1000р

На получение бабки идем на то же авито и покупаем мини пк на intel N97 или n100.

В идеале берем s1 и получаем

2 сетевых порта 2.5g

2 полноценных разьема m2

За эти бабки 16-32gm оперативки и 256gb SSD.

По итоговым характеристикам получаем решение

- меньше

- тише

- холоднее

- быстрее

Ах да сервер будет потреблять в месяц электричества на сумму около 1000р против 100р для мини ПК.

Из минусов пожалуй меньшее количество оперативной памяти.

К сожелению сейчас реалии таковы что старое железо если его эксплуатировать 24/7 невыгодно. Даже если рассматривать всего год эксплуатации то экономически оправдана покупка чего то более свежего и более энергоэффективного.

Зы как "мужской конструктор" это очень интересная железка. И в исследованиях безусловно поддерживаю автора.

Показать полностью
[моё] IT Техника Электроника Timeweb Компьютерное железо Программирование Микроконтроллеры Сервер Длиннопост Ответ на пост Текст
18
46
user9583706
9 дней назад
TECHNO BROTHER

Ответ на пост «Сервер за копейки»⁠⁠2

Самой главной проблемой блейд досок являются не только размеры (они зачистую не встают никуда кроме спец корзин), и не комплектующие коих на просторах интернета за копейки просто завались. Проблема в блоках питания. 1. Распиновка разъема питания на плате не такая как у стандартных ПК 2. На платах (если мы хотим мооооощь сииллааа власть) два процессора(к которым не подходит обычный охлад), соответственно два разъема питания. 3. Питание платы преимущественно 12В, что делает использование стандартных БП проблемой (перекос по одному напряжению и уход БП в защиту) 4. Использование серверных БП это жопа, звук реактивного самолета в помещении вряд ли кто долго сможет терпеть.

Периферия)))) На платах или мало, или вообще нет USB, PCI-E расположены так, что без razer кабеля Вы не подключите(не закрепите) видеокарту. А так да, камп получается огонь, и не как некоторые пишут, производительности хватает за глаза.

P.S. Лучше искать платы от рабочих станций, они хоть и больше, но имеют стандартизацию как обычные, питание хоть и х2, но стандартные. У меня Z9 PE D8 WS от ASUS, на самых мощных(по частоте) E52687W v 2 , и 8 каналов (В ВОСЬМИКАНАЛЬНОМ РЕЖИМЕ) оперативка 1866 samsung, этот монстр уделает DDR4 на любой частоте по пропускной способности, а по цене вообще молчу.

IT Техника Электроника Timeweb Компьютерное железо Программирование Микроконтроллеры Сервер Длиннопост Ответ на пост Текст
15
1911
Блог компании
Timeweb.Cloud
Timeweb.Cloud
10 дней назад

Сервер за копейки⁠⁠2

Автор текста: zatim

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Обычно сервер ассоциируется с чем-то дорогим и недоступным обычному человеку. Даже на вторичном рынке они пока еще стоят весьма существенно (если не рассматривать совсем уж допотопные экземпляры). Однако, есть и такие, которые можно приобрести весьма недорого.

Это, так называемые, блейд-серверы. Блейд-сервер (от англ. blade — лезвие) – концепция использования нескольких компактных серверов в одной общей корзине (шасси). Некоторые узлы сервера (такие как блоки питания, охлаждение, сетевые адаптеры, управление) вынесены за пределы сервера и сделаны общими для всех. Благодаря этому исключается излишнее дублирование и, соответственно, уменьшаются габариты и общее энергопотребление всей сборки. Увеличивается плотность вычислительной мощности на единицу объема серверной стойки. Из-за того, что единичный блейд-сервер бесполезен без корзины, а в корзине избыточен, они не пользуются спросом на вторичном рынке, а потому стоят весьма недорого.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Сервер со снятой крышкой

Мне удалось приобрести пару таких серверов за сумму всего порядка 1200 р. за шт. Это китайские серверы BH620 фирмы Huawei. Что же мы получаем за эти деньги? В каждом сервере имеется по 2 процессора Intel Xeon E5645, работающих на частоте 2,4 ГГц и имеющие по 6 ядер и 12 потоков. Сервер укомплектован 9-ю планками памяти DDR3 по 8 Гб (всего 72 Гб), дисковым RAID массивом из двух SAS дисков объемом по 300 Гб и 6-ю гигабитными Ethernet адаптерами. Даже сейчас это весьма неплохая вычислительная мощь, если сравнивать с бытовым сегментом, особенно, если принять во внимание копеечную цену всего этого добра. На одной плате-мезонине в передней части платы располагается RAID-контроллер дисков фирмы LSI, в задней части платы на двух мезонинах располагаются Ethernet-контроллеры на микросхеме Broadcom BCM5715. Каждая микросхема обеспечивает по 2 гигабитных порта. Еще одна такая же микросхема распаяна непосредственно на материнской плате, итого 6 интерфейсов.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Фото задней части платы

Сам сервер весьма компактен. Ширина всего 31 см, длина 48 см, толщина 4 см. В корзине они стоят вертикально в количестве 10 шт. Спереди располагаются 4 отсека для SAS дисков формата 2,5”, сервисный разъем, кнопка включения и индикаторы. Задняя стенка полностью отсутствует. Через нее в сервер задувается воздух для охлаждения. Также, сзади на плате расположены многоконтактные разъемы для соединения с корзиной и пластиковые направляющие. Направляющие помогают правильно состыковать разъемы, не повредив их.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Фото со стороны разъемов

Чтобы запустить этот сервер, необходимо обеспечить, как минимум, питание, охлаждение и подключение монитора с клавиатурой. К сожалению, гугление не выдало никакой существенной технической информации, которая помогла бы с решением этих вопросов. Нет ни распиновки разъемов, ни электрических параметров сигналов. Придется их изучать самостоятельно. Из рекламного буклета было выяснено, что сервер питается напряжением 12 В, а спереди через сервисный разъем выходят сигналы VGA и 3 шт интерфейсов USB. Проще всего оказалось найти куда подключать питание 12 В. Широкая шина питания идет от задних разъемов куда то вглубь платы.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Фото задней части платы. Шина питания 12 В

Вот только некоторые разъемы оказались выломаны. Но это не беда, все равно ответных частей у меня нет. Я подпаялся к их контактам несколькими тонкими проводами. Затем пучок тонких проводов соединил с толстым проводом, который подсоединил к лабораторному блоку питания. Определить полярность также несложно – минусовой провод питания должен звониться накоротко с корпусом устройства.

Подав питание, мы видим что некоторые светодиоды на плате зажглись и начали мигать. Значит, железка живая и что-то в ней происходит. Отлично, идем дальше.

Теперь нужно попробовать подключить к серверу монитор и клавиатуру. Сначала я попытался найти фирменный кабель, который должен подключаться к сервисному разъему. После весьма долгого гугления что-то похожее нашлось на Алиэкспресс. Внешний вид и количество контактов у разъема на фото было примерно похоже на то, что требовалось. Однако цена этого кабеля вместе с доставкой была почти как за оба сервера сразу, что выглядело не очень бюджетно. К тому же ждать месяц совершенно не хотелось. Попробуем выяснить распиновку и спаять кабель самостоятельно. Для этого я открутил маленькую платку с сервисным разъемом для более внимательного изучения.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Плата с сервисным разъемом

На плату приходят два пучка проводов, один из которых состоит из трех экранированных пар из белого и зеленого проводов. Очевидно, это и есть те 3 интерфейса USB, которые выходят на сервисный разъем. Так я вызвонил контакты на сервисном разъеме, которые отвечают за сигнальные пары USB. Экраны проводов соединены с общим проводом. Прозвонив их, я нашел все контакты сервисного разъема, соединенные с общим проводом. Питания 5 В среди этих проводов не было. Но, на плате были распаяны 3 одинаковых цепочки из самовосстанавливающихся предохранителей и фильтрующих конденсаторов. Видимо это и есть питание 5 В, которое шло с другого разъема. Прозвонив эти цепи, я определил все контакты, отвечающие за 5 В. Таким образом, с USB мы разобрались.

Для подключения монитора по интерфейсу VGA необходимо 5 сигнальных проводов – R, G, B, HS, VS. Первые 3 отвечают за 3 основных цвета "красный", "зеленый" и "синий", оставшиеся два — за строчную и кадровую синхронизацию соответственно. Поскольку на маленькой плате не было электронных компонентов, которые хоть как-то могли быть связаны с выводом изображения, можно предположить, что эти сигналы должны приходить с материнской платы транзитом напрямую на сервисный разъем. И да, после прозвонки такие сигналы были обнаружены – 3 сигнала – R, G, B шли напрямую и 2 сигнала шли через небольшое сопротивление 100 Ом. Последние, видимо, сигналы синхронизации. Кто из них кто, я предполагал выяснить с помощью осциллографа. Строчные синхроимпульсы должны идти с частотой около 31 кГц, кадровые – 60 Гц. Полная распиновка разъемов, полученная в результате исследований, приведена в таблицах ниже. Может быть, кому то пригодится эта информация.

Таблица 1 – Разъем с сигналами USB от материнской платы. Контакт 1 отмечен на разъеме треугольничком. Нумерация – в одном ряду четные, в другом нечетные.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост
Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост
Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Сервисный разъем крупным планом

Ответный разъем, похожий внешне на сервисный, ищется на Алиэкспресс по названию SCSI MDR 26 pin. Этот разъем был заказан, а пока он едет, просто припаяемся проводами напрямую к контактам.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Подключаем VGA

Однако, далее меня ждало разочарование. После подачи питания никакие сигналы на монитор не выдавались, также не было и питания на USB. На кнопку включения тоже не было никакой реакции. Только лишь моргали различные светодиоды. Характер моргания периодически менялся, что говорило о том, что что-то там все-таки происходит. И я стал дальше прозванивать все, что можно было прозвонить и смотреть осциллографом все, что можно было посмотреть.

В задней части материнской платы были обнаружены стандартные штырьковые разъемы с шагом 2,54 мм. Один из них, судя по картинке на крышке сервера, служил для подключения встроенного накопителя USB. Два других, 10-контактных, очень напоминали JTAG, и, вероятно, предназначались для отладки и программирования микросхем ПЛИС на плате. И также обнаружился трехконтактный разъем, на котором присутствовало напряжение минус 6 В. Отрицательное напряжение явно говорило о том, что это был порт RS232  для вывода информации в терминал. Рядом с разъемом также обнаружилась и микросхема преобразователя интерфейса MAX x232, что подтвердило догадку. Был наскоро спаян кабель-переходник и вынут из закромов ретро-ноутбук TOSHIBA с портом RS232 и программой PuTTY. На одном из контактов периодически проскакивали какие-то импульсы, очевидно, это выход TX, он был подключен ко входу RX ноутбука, на другом контакте ничего не было. Видимо, это вход RX, его я припаял к выходу TX ноутбука. Ну, а их общий провод звонился накоротко с корпусом устройства.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Подключаем терминал по RS232

Сначала я запустил программу PuTTY на скорости 9600, на экране появились какие то символы вперемешку с мусором. Видимо, скорость не та. Я попробовал 115200 и вуаля! На экран посыпался осмысленный текст.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Информация из терминала

Как оказалось, при подаче питания первым стартует вспомогательный микроконтроллер MPC852T. Он работает на частоте 100 МГц, имеет 32 Мб ОЗУ и 16 Мб флеш-памяти. Он загружает операционную систему MontaVista. Это небольшая ОС linux для встраиваемых систем. После загрузки ОС, процессор инициализирует всю периферию сервера. И пока он все это не сделает, никакой реакции на нажатие кнопки включения не будет. После старта система MontaVista выдает стандартное linux’овское приглашение залогиниться. После непродолжительного подбора логина и пароля подошла комбинация root root. Однако внутри системы ничего интересного не было. По команде help выдавался список непонятных команд неизвестного назначения. Туда я копать дальше не стал.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Вспомогательный микроконтроллер

После того, как вспомогательный микроконтроллер загрузился, появилась реакция на кнопку включения. Кратковременно зажигались и гасли светодиоды на дисках и мезонинах сервера. Как оказалось, мощности моего лабораторного блока питания недостаточно для питания сервера. В рабочем режиме он потребляет ток порядка 10...11 А. При максимальной загрузке – до 20 А. Для питания можно применить стандартный блок питания 12 В мощностью 200...250 Вт для светодиодных лент, они довольно дешевы и широко представлены на маркетплейсах. Но, можно сэкономить и на этом. Для питания можно применить старый компьютерный БП. Единственное, необходимо убедится по этикетке, что он может выдать необходимый ток по шине 12 В. Также блок необходимо доработать. Инструкций по доработке в интернете имеется огромное количество. В старых компьютерных блоках питания основной канал, по которому происходит стабилизация – 5 В. Поэтому нужно отключить обратную связь от канала 5 В и оставить только 12 В, при этом нужно будет заново подобрать резистор в цепи обратной связи так, чтобы выходное напряжение составило порядка 12,4...12,6 В с запасом на падение напряжения на проводах. Также в некоторых блоках иногда необходимо дополнительно поколдовать со схемой защиты и формирования сигнала PG. Ее можно просто удалить.

Я же для питания применил доработанное зарядное устройство для 12 В буферных свинцовых аккумуляторов. Устройство выдает ток до 15 А, чего вполне достаточно для питания сервера в нормальном режиме (для ограничения максимального потребления тока можно в БИОС-setup сервера по максимуму включить все функции энергосбережения, а также отключить лишние ядра). Доработка этого зарядного устройства заключалась просто в удалении части схемы, отвечающей за стабилизацию зарядного тока и переключение в режим буферного питания после окончания заряда. Для работы в качестве блока питания, эти функции не только не нужны, но и вредны.

Устройство имеет мощное пассивное охлаждение, в нем отсутствуют вентиляторы и поэтому оно не издает шума при работе. Именно этот фактор и обусловил выбор именно его в качестве источника тока для сервера.

Поскольку сервер потребляет достаточно существенный ток, необходимо использовать питающие провода достаточного сечения, не менее 2,5 квадрата, а в непосредственной близости от сервера (например, в точке соединения тонких проводов с толстыми) необходимо установить электролитический конденсатор емкостью не менее 10000 мкФ х 16 В.

Следующая насущная проблема – охлаждение. При работе в составе с корзиной, охлаждение обеспечивала именно она. В самом сервере вентиляторов нет. Я на этот счет долго не думал, просто вырезал ножницами по металлу две дыры около процессоров и приделал туда 2 стандартных 80-мм вентилятора от старых компьютерных блоков питания.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Расположение вентиляторов

Вентиляторы запитал от тех же 12 В, что и сам сервер. Вентиляторы необходимо расположить таким образом, чтобы создаваемый ими поток воздуха проходил сквозь радиаторы процессоров и выходил наружу спереди сервера. Заднюю часть сервера необходимо заглушить, чтобы воздух туда не выходил, а шел только вперед, через процессоры. Я сделал это обычным канцелярским скотчем. Единственный момент — вентиляторы нужно выбрать такие из имеющихся, что создают минимальный шум при работе. Потребляемая сервером мощность в среднем составляет порядка 130 Вт, в принципе, чтобы выдуть такое количество тепла двух вентиляторов должно быть достаточно. А на время отладки использовал сборку из 6 компьютерных вентиляторов просто положив ее сверху.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Временный вариант

После того, как сервер начал стартовать, на разъеме VGA появились сигналы и с помощью осциллографа получилось вычислить где там HS, а где VS. Далее припаиваем разъем и подключаем монитор. Любуемся картинкой)

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Установка ОС

Вначале я перепутал между собой сигналы R и B. Это выяснилось по неправильному оттенку картинки в винде. Также поначалу не хотели работать разъемы USB. Там мной были перепутаны сигналы D+ и D-. Как оказалось, китайцы в своих серверах не придерживаются стандартного цветового кода USB проводов. Выше в таблицах приведена уже поправленная распиновка.

После этого, я снес RAID массив, что там был, и создал новый, RAID 1, простое зеркалирование. Хотя для бытового использования больше подошел бы RAID 0, он обеспечивает более высокую скорость и полное использование объема обоих дисков. Но без резервирования. На созданный массив без проблем накатилась винда 10. Удивительно, но даже не потребовалось никаких танцев с бубнами и SCSI драйверами. Трех разъемов USB, кстати, вполне достаточно для работы. В одном торчит беспроводная клава/мышь, во втором – WiFi свисток, а третий для всяких флешек и прочего. У некоторых современных ноутов бывает и того меньше внешних разъемов USB.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Самодельные переходники

Быстродействие такого компьютера сложно оценить на обычных бытовых задачах. Мало где требуется 72 Гб ОЗУ и 24 потока и не любое ПО способно загрузить их все. Но все равно попробуем. На старом ноутбуке, примерно тех лет, что и сервер, с процессором Core 2 Duo T5500, 3Гб ОЗУ и HDD диском некий скетч в Ардуино компилируется около 7 мин при первом запуске и 2 мин 37 с при последующих. На описанном в статье сервере это происходит за 2 мин 39 с и 1 мин 8 с, соответственно. На относительно новом игровом ноутбуке с процессором Core i7 10870H c 16 Гб ОЗУ и SSD дисками эта же компиляция занимает 1 мин 10 с и 31 с соответственно.

Но если использовать данный девайс именно как сервер, то без высокоскоростных интерфейсов Ethernet не обойтись. Согласно краткому описанию микросхемы Ethernet контроллера Broadcom BCM5715, она содержит в себе 2 независимых интерфейса Ethernet с выходными интерфейсами типа SerDes 1G. SerDes (Serializer/Deserializer) это физический интерфейс SGMII (Serial Gigabit Media Independent Interface). И представляет собой две дифференциальные пары RX и TX. К линиям SerDes можно непосредственно подключать SFP модули. Если, например, взять SFP модуль с медным интерфейсом RJ45, то мы получим обычную гигабитную сетевую карту. Для пробы я раздобыл один из таких модулей. Их цена на вторичном рынке порядка 500...1000 р (почти как сервер целиком). Я же приобрел новый на Алиэкспресс примерно за 8$ (вместе с доставкой). Осталось найти на плате сигналы RX и TX. Они должны выходить на внешний многоконтактный разъем. На плате мезонинов Ethernet-контроллеров были обнаружены группы конденсаторов по 4 шт в каждой.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Фото платы Ethernet-контроллеров

Очевидно, это и есть разделительные конденсаторы пар RX и TX интерфейса SerDes. Осталось только вызвонить их тестером, на какие контакты внешнего разъема они идут, а осциллографом определить, кто из них RX, а кто TX. На TX должен быть виден какой-то сигнал. К сожалению, полярность тестером определить не получится, ее придется подбирать методом тыка. Это несложно, так как там всего 4 комбинации. В качестве проверки можно замкнуть этот интерфейс сам на себя, то есть соединить TX+ c RX+, а TX- c RX-. Например, перемычками.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Перемычки на интерфейсе Ethernet 6

При этом на соответствующем интерфейсе должен подняться линк.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Проверка наличия линка

Кстати сказать, линк поднимается даже если замкнуть только один провод из пары, да и полярность при этом не особо важна.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Многоконтактные разъемы

Сигналы многоконтактных разъемов, назначение которых получилось выяснить, приведены ниже. Также на этот разъем должны выходить линии интерфейса PCIe, а также линии для подключения клавиатуры и мыши по интерфейсу PS/2. Их я выискивать не стал, имеющихся интерфейсов USB оказалось достаточно.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Питание модуля можно взять с контакта 1А описанного выше маленького многоконтактного разъема, там как раз присутствует 3,3 В. Общий провод подключается к любым контактам GND. Сигналы выключения передатчика TX Disable, ошибки TX Fault и вход Rate Select никуда не идут уже на самом модуле, а значит и подключать их не нужно. Сигнал детектора несущей LOS можно также оставить неподключенным. Все равно, микросхема Broadcom определяет наличие сигнала сама по наличию синхронизации в потоке данных. Также можно оставить в воздухе сигналы MOD-DEFх. Между питанием 3,3 В и землей желательно припаять блокирующий конденсатор непосредственно на контакты самого модуля. Я не припаивал, вроде и так все стабильно работает. Провода сигнальных пар RD и TD необходимо свить.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

SFP-модуль. Прикреплен стяжками к пластиковой направляющей

Вместо медного SFP-модуля можно аналогичным образом подключать оптические модули и соединяться с любым другим сетевым оборудованием по оптоволокну. Если же одинаковые сервера расположены в непосредственной близости, их можно соединить напрямую интерфейсами SerDes с помощью только проводов, без каких-либо дополнительных преобразователей. Единственный момент – микросхема BCM5715 работает только на одной скорости – 1Gbit, поэтому и модули и сопрягаемое сетевое оборудование должно поддерживать работу на этой скорости.

Питание сервера от единственного источника +12 В открывает заманчивые возможности по организации его бесперебойного питания. Опытным путем было установлено, что сервер стабильно работает при снижении напряжения питания до 10,5 В. После чего отключаются диски и сервер вылетает в синий экран. Если бы не диски, сервер, наверное, позволял снижать напряжение и дальше. Диски, конечно, можно заменить на современные SSD, которые требуют только одного питания 5 В. Стандарт SAS позволяет напрямую подключать к себе как SATA, так и SAS диски. Их разъемы механически и электрически совместимы за исключением небольшой пластиковой перемычки. Перемычка не позволяет воткнуть диск SAS в разъем SATA, а наоборот – позволяет. Но диски SSD большого объема стоят недешево, с ними сервер перестает быть сервером за копейки.

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Разъем подключения SAS-дисков

10,5 В – это как раз и есть минимальное рабочее напряжение свинцово-кислотной батареи. А рабочее напряжение сервера 12,6 В равно напряжению полностью заряженной батареи. Можно подключить резервную батарею прямо параллельно шине питания сервера. Для зарядки батареи необходимо будет только добавить маломощный повышающий преобразователь 12 -> 15 В и несколько коммутирующих полевых транзисторов.

Однако я решил пойти несколько более сложным путем. Дело в том, что подходящей свинцовой батареи у меня не было, но зато скопилось большое количество б/у Li-Ion аккумуляторов типоразмера 18650 от отслуживших батарей питания ноутбуков. У значительного количества таких батарей была типовая неисправность – при длительном хранении встроенный микроконтроллер разряжает в ноль одну из трех последовательно включенных  ячеек батареи из-за чего вся батарея приходит в негодность. При этом неразряженные ячейки сохраняют работоспособность и даже иногда показывают паспортную емкость. Если соединить большое количество таких аккумуляторов параллельно, то вместе они обеспечат необходимую емкость и ток для работы сервера. Также при работе параллельно в большой группе нивелируется разброс их остаточной емкости.

Однако, подключить напрямую такую батарею к серверу уже не получится. Максимальное напряжение одной Li-Ion ячейки – 4,2 В. Если взять и включить 3 шт последовательно, то общее напряжение составит 12,6 В – что равно рабочему напряжению сервера. Однако минимальное напряжение ячейки – 2,5 В, и всей сборки – 7,5 В, что намного ниже минимально допустимых 10,5 В для сервера. Если включить 4 ячейки последовательно, то минимальное напряжение составит 10 В, что близко к 10,5. Зато недопустимо вырастет максимальное напряжение сборки – 16,8 В, что для сервера будет явно перебор. В общем, в любом случае придется добавлять какой-то преобразователь – стабилизатор напряжения. Повышающий в первом случае и понижающий во втором.

Я выбрал схему с первым вариантом. Повышающий преобразователь должен выдавать на выходе напряжение 12 В и ток до 20 А при минимальном входном напряжении около 8 В.

Рассмотрим схему устройства:

Сервер за копейки IT, Техника, Электроника, Timeweb, Компьютерное железо, Программирование, Микроконтроллеры, Сервер, Длиннопост

Полная схема устройства

Повышающий преобразователь собран по прямоходовой схеме на широко известной микросхеме TL494 (или ее многочисленных аналогах). Эту микросхему можно добыть из старого компьютерного блока питания. Трансформатор также можно взять готовый из того же блока питания. При выборе донора следует отдать предпочтение наиболее фуфлыжному экземпляру – в них силовые трансформаторы самые крошечные, что в нашем случае только на руку. Трансформатор включен по автотрансформаторной схеме. Напряжение на выходной обмотке суммируется с входным напряжением. Таким образом, можно существенно облегчить работу преобразователя, ему потребуется перекачивать через себя не всю мощность, а только лишь добавить недостающее напряжение. Диодная сборка Шоттки и выходной дроссель также взяты готовые из того же блока питания – у дросселя используются те его обмотки, что ранее были подключены к каналу 5 В, это обычно две одинаковые обмотки, намотанные толстым проводом и включенные в параллель. Диодная сборка также взята из канала 5 В, они там обычно рассчитаны на 30 А. Силовые транзисторы можно взять из старых ИБП. Их множество различных номиналов, но обычно параметры у них примерно идентичные – максимальное напряжение 25-30 В и максимальный ток 50-100 А. Предпочтение следует отдать тем из них, что имеют минимальное сопротивление открытого канала (не более 5-10 мОм). Силовые транзисторы и особенно диодная сборка должны быть установлены на радиатор.

Выходные транзисторы микросхемы TL494 включены по схеме с общим коллектором, благодаря чему включение полевых транзисторов происходит быстро. Скорость ограничена сопротивлением резисторов R16 и R20. Чтобы и выключение происходило так же быстро, добавлены каскады на транзисторах VT5, VT6. Цепочки R23, C14 и R24, C15 демпфируют обмотки трансформатора, предотвращая звон при переключении. Их можно также целиком взять из донорского БП чтобы не заморачиваться с расчетом и подбором. Цепь, подключенная к выводу 4 микросхемы используется как для плавного пуска, так и для выключения преобразователя. По умолчанию через R15, R13 туда подается 5 В, конденсатор С3 разряжен и микросхема выключена.

Первичная обмотка трансформатора вообще то и не нужна. Но ее можно использовать для контроля исправности преобразователя. При работе преобразователя на ней появляются высоковольтные импульсы, которые выпрямляются диодом и через делитель поступают на вход микроконтроллера, сообщая тому что преобразователь функционирует.

ЧИТАТЬ ДАЛЕЕ ↩ (без регистрации и СМС)

Материал получился достаточно объемным и все подробности, к сожалению, не влезли.


Написано специально для Timeweb Cloudи читателей Пикабу. Больше интересных статей и новостей в нашем блоге на Хабре и телеграм-канале.

Хочешь стать автором (или уже состоявшийся автор) и есть, чем интересным поделиться в рамках наших блогов (за вознаграждение) — пиши сюда.

Показать полностью 24
IT Техника Электроника Timeweb Компьютерное железо Программирование Микроконтроллеры Сервер Длиннопост
312

Оформить подписку для бизнеса

Перейти
Партнёрский материал Реклама
specials
specials

Ваш бизнес заслуживает большего!⁠⁠

Оформляйте подписку Пикабу+ и получайте максимум возможностей:

Ваш бизнес заслуживает большего! Малый бизнес, Предпринимательство, Бизнес

О ПОДПИСКЕ

Малый бизнес Предпринимательство Бизнес
13
dedyukhinnp
1 месяц назад

Лабы на esp32⁠⁠

Делали сегодня лабы на микроконтроллере esp32 через ESPlorer IDE.

Может кому нибудь будет интересно)

Лабы на esp32 Микроконтроллеры, Программирование, Esp32, Esp8266, IT, Разработка, Интернет вещей, Умный дом, Видео, Вертикальное видео, Короткие видео, Длиннопост

ESPlorer

В первой лабе надо было подключиться к устройству (оно создаёт точку WiFi) и через веб-интерфейса устройства зажечь светодиод

Во второй надо было подключить к устройству кнопку, подключиться опять по WiFi и в веб-интерфейсе увидеть, что при нажатии на кнопку, отображается информация, что она нажата.

В третьей надо было подключить к устройству джойстик, в веб-интерфейсе можно смотреть положение джойстика.

В четвёртой лабе подключали динамик к устройству, заходили в веб-интерфейс и включали оттуда мелодию на динамике))

И в пятой взяли два устройства. Одно запрограммировали как сервер. Другое как клиент. Сервер раздаёт WiFi. Клиент автоматически к нему подключается. На клиенте есть кнопка. Если на неё нажать, то на сервере зажигается лампочка)

Показать полностью 5
[моё] Микроконтроллеры Программирование Esp32 Esp8266 IT Разработка Интернет вещей Умный дом Видео Вертикальное видео Короткие видео Длиннопост
11
44
TechSavvyZone
TechSavvyZone
3 месяца назад

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая⁠⁠

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

От первых моделей с универсальными шейдерами до появления видеокарт с поддержкой современного DirectX 12.

Radeon HD2000: DirectX 10 и суперскалярная TeraScale

Компания AMD завершает сделку по приобретению ATI в конце 2006 года. Тогда же NVIDIA запускает первые карты новой линейки GeForce 8000 с поддержкой DirectX 10, которые бьют все рекорды производительности. Ответа пришлось ждать до мая 2007 года: именно тогда ATI выпускают первую карту, разработка которой частично протекала под крылом AMD — Radeon HD2900 XT.

В основе модели чип R600 на новой графической архитектуре TeraScale. Она разработана с учетом API DirectX 10 и шейдеров версии 4.0. К тому же TeraScale поддерживает неграфические вычисления с помощью API под названием ATI Stream. ГП имеет 64 суперскалярных шейдерных кластера, в каждом из которых пять универсальных скалярных потоковых процессоров (SP). Четыре SP могут выполнять только простые инструкции, а пятый — более сложные. Управляет вычислительными блоками Ultra-Threaded Dispatch Processor второго поколения.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Таким образом, полный чип имеет 320 SP. Компанию им составляют 16 блоков ROP и столько же TMU, а также программируемый блок аппаратной тесселяции, который не входил в стандарт DirectX 10. Контроллер памяти имеет кольцевую шину, которую расширили до 1024 бит. Внешняя шина памяти достигла небывалых 512 бит. Чип производился по технологии 80 нм, достигнув частоты в 743 МГц. HD2900 XT могла оснащаться 512 МБ или 1 ГБ как GDDR3, так и более быстрой GDDR4, обладающей пропускной способностью в 128 ГБ/c.

R600 получил улучшения анизотропной фильтрации и режимов сглаживания: к последним добавились MSAA 8x и CFAA. Но, несмотря на 320 SP и 512-битную память, HD2900 XT не удалось догнать конкурентную GeForce 8800GTX, поэтому она позиционировалась как конкурент стоящей на ступеньку ниже 8800GTS. При этом потребление модели было очень высоким по меркам того времени — целых 215 Вт. Для организации питания карте впервые потребовалось два разъема: 6-pin и 8-pin.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Спустя месяц после старшей карты на сцену вышли средние и младшие представители линейки: модели серии HD2600 и HD2400. Карты оснащались 256 или 512 МБ памяти GDDR3 или DDR2, а старшая HD 2600 XT вдобавок получила вариант с GDDR4. Линейка HD2600 получила чип RV630 со 120 SP и 128-битной шиной памяти, а HD2400 — RV610 с 40 SP и 64-битной шиной. Производились оба ГП по технологии 65 нм. Весь ассортимент карт обеспечили три чипа: после десятка моделей ГП и трех десятков моделей видеокарт в прошлых поколениях наконец воцарился порядок.

Осенью 2007 года на базе R600 были выпущены еще две карты: HD2900 PRO и HD2900 GT. Pro-версия отличалась от флагмана сниженными частотами и выпускалась в двух версиях: с 512-битной и урезанной 256-битной шиной памяти. GT была ограничена существеннее: активными остались только 240 SP из 320, а память представляли 256 или 512 МБ 256-битной GDDR3.

Radeon HD3000: DirectX 10.1 и оптимизация

В ноябре 2007 года, спустя всего полгода после выхода первой карты серии HD2000, AMD выпускает старшие карты следующего поколения — HD3870 и HD3850.

Смекнув, что за топами NVIDIA в данный момент не угнаться, компания решила оптимизировать и перенести на 55 нм техпроцесс свои прошлые творения. Первым стал наследник чипа R600, получивший название RV670. Он обладает аналогичной конфигурацией блоков, но получил несколько нововведений. В их числе поддержка DirectX 10.1 и шейдерной модели 4.1, а также интерфейс PCI-E 2.0, который вдвое ускоряет скорость обмена данными между картой и системой.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Единственным минусом чипа стала более узкая шина памяти: теперь она стала 256-битной, а внутренняя кольцевая шина вернулась к 512-битной организации. Однако это позволило значительно упростить ГП при минимальном падении производительности, ведь 320 SP нагрузить 512-битную шину памяти в большинстве случаев были не в состоянии. За счет более тонкого техпроцесса размеры ГП удалось уменьшить вдвое, поэтому он стал обходиться намного дешевле. К тому же значительно упало энергопотребление: старшая модель потребляла всего 106 Вт.

Карты серии HD3800 показывали производительность уровня прошлой линейки HD2900, но отставали от конкурентной серии GeForce 8800 на чипе G92. Тем не менее, они стали намного популярнее предшественников благодаря более низкой цене и сниженному энергопотреблению. Последний факт позволил AMD создать свою первую двухчиповую карту — HD3870 X2. Она была запущена через два месяца после первых карт линейки и представляла собой две платы с чипами RV670, объединенные в одном корпусе. Несмотря на это, TDP карты достигало всего 165 Вт. Спустя несколько месяцев была выпущенная еще одна двухчиповая модель — HD3850 X2. Благодаря CrossFire стало возможным объединить две таких платы, тем самым получив в одной системе четыре ГП.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

В январе 2008 года было представлено еще два 55 нм чипа: RV635 и RV620. Первый повторял конфигурацию RV630 из прошлой линейки и лег в основу Radeon HD3650. Карта, как и предшественник, могла оснащаться одним из трех типов памяти: GDDR4, GDDR3 или DDR2. К концу года на базе RV630 появились еще две карты — HD3730 и HD3750, отличающиеся от первой модели частотами. Младший RV620 был аналогичен RV610, и стал основой бюджетных карт серий HD3400 и HD3500.

Radeon HD4000: больше — лучше

В июне 2008 года NVIDIA представляет «тяжелую артиллерию»: карты GTX280 и GTX260 на чипе GT200. Спустя неделю AMD отвечает двумя картами новой серии — HD4870 и HD4850 на чипе RV770.

В основе RV770 все та же архитектура TeraScale, но баланс блоков изменен. ГП имеет 160 шейдерных кластеров, объединенных в 10 крупных массивов, называемых SIMD-блоками. Таким образом, полный чип содержит 800 SP — в целых 2,5 раза больше, чем в прошлом поколении. Вдобавок к этому ускорена работа с геометрическими шейдерами. Кратно возросло и количество TMU, слабое место прошлого чипа — с 16 до 40. А вот блоков ROP все также 16, хотя они подверглись улучшениям и стали работать эффективнее предшественников.

Много изменений в подсистеме обмена данными: переработана система кэширования, кольцевую шину сменила схема с центральным хабом, а контроллер памяти получил поддержку быстрой GDDR5. Несмотря на 256-битную шину, это позволяет достичь пропускной способности в 115 ГБ/c — лишь немногим меньше, чем 512-битная шина вместе с GDDR4. Памятью GDDR5 оснащалась топовая HD4870, а младшая 4850 получила привычную GDDR3 и пониженную частоту ядра. При всех улучшениях, карты вышли довольно экономичными — TDP старшей модели не превышал 160 Вт.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Как и в прошлой линейке, AMD придерживалась правила «дешево и сердито». HD4850 была на уровне конкурентной 9800GTX, а HD4870 приближалась к GTX260, намного более дорогой и сложной карте — и все это при более низкой цене. Для конкуренции с топовой GTX280 в августе была выпущена двухчиповая HD4870 X2. Она не давала и шанса топовой GeForce в играх, оптимизированных под CrossFire, но потребляла прилично — до 286 Вт. В ноябре появилась и ее двухголовая «сестра» — HD4850 X2.

Сентябрь 2008 года принес младшие серии Radeon HD4600, HD4500 и HD4300. Эти карты стали последними моделями, у которых имелась разновидность с AGP-интерфейсом. Старшая серия базируется на чипе RV730. Он получил 320SP и 128-битную шину, с которой могли использоваться три типа памяти: GDDR4, GDDR3 и DDR2. Две младшие серии получили RV710 — чип с 120 SP и 64-битной шиной памяти, оснащавшейся DDR2 или DDR3. В этом поколении только у младших карт остались версии с 256 МБ памяти. Средние и старшие модели выпускались в двух вариантах: с 512 МБ или 1 ГБ.

В октябре появляется первая видеокарта на базе урезанного RV770 — HD4830. Карта обладает 640 SP и 256-битной памятью GDDR3. В 2009 году к ней добавятся еще две модели с таким же чипом, но 128-битной памятью GDDR5 — HD4810 и HD4730.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

В апреле 2009 года серия Radeon HD4700 пополнится еще одной моделью — HD4770. Она обладает новым чипом RV740, который изначально имеет 640 SP и 128-битную шину GDDR5, и производится по техпроцессу 40 нм. Так компания решила «обкатать» техпроцесс перед запуском новой линейки видеокарт. Одновременно был выпущен обновленный топ HD4890 на чипе RV790. Он представляет собой RV770, оптимизированный для достижения более высоких частот — 850 МГц и выше. Новая модель составила достойную конкуренцию GTX275.

Сентябрь 2009 года принес неожиданное расширение серии Radeon HD4000. HD4750 стала второй картой на основе RV740, а HD4860 — второй моделью на RV790. При этом последний чип был урезан до 640 SP, чего хватило для борьбы на равных с главным «врагом» GTS250.

Radeon HD5000: первые с DirectX 11

В конце сентября 2009 года AMD запускает новую линейку видеокарт Radeon HD5000. Ее первые представители: HD5870 и HD5850. В отличие от прошлых линеек, это топовые решения, предназначенные для борьбы с флагманами конкурента. Карты получили поддержку DirectX 11, принесшего шейдеры версии 5.0, аппаратную тесселяцию и вычисления DirectCompute. Это заслуга обновленной архитектуры TeraScale 2.

Чип, используемый в картах серии, получил кодовое имя Cypress. Он производился по техпроцессу 40 нм. Внутреннее строение довольно схоже с RV770, но всех блоков стало вдвое больше: 20 SIMD, 320 шейдерных кластеров, 1600 SP, 32 ROP и 80 TMU.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Блок тесселяции, присутствующий во всех чипах еще с R600, был доработан для поддержки стандартной тесселяции DirectX 11. Шейдерные процессоры получили поддержку новых видов инструкций, а кэши ГП ускорились. Шина осталась 256-битной, но контроллер получил поддержку более высокочастотной памяти, за счет чего полосу пропускания удалось увеличить до 153.6 ГБ/c.

Такие характеристики получила старшая HD5870. Младшая HD5850 отличалась сниженными частотами и урезанным до 1440 SP чипом. Тем не менее, обе модели обгоняли карты серии GTX200. Ответ от NVIDIA последовал лишь полгода спустя — топовые GTX480 и GTX470 опережали продукцию AMD при использовании тесселяции, но без нее были на одном уровне. К тому же HD5870 потребляла значительно меньше энергии, чем конкурентная GTX480 — 188 Вт против 250 Вт. Раннее появление на рынке и более скромное энергопотребление склонило чашу весов пользователей в сторону карт AMD.

Спустя месяц после старших карт были выпущены HD5770 и HD5750 на базе более скромного чипа Juniper, являющегося «половинкой» Cypress. ГП обладает 128-битным интерфейсом памяти, но использует такую же быструю память GDDR5, как и старшие карты. Карты стали популярными за счет производительности уровня HD4870 и HD4850 при гораздо меньшем энергопотреблении. GTS450 от конкурента выйдет годом позже и будет медленнее старшей HD5770.

Вслед за этими картами последовал новый двухчиповый король графики — HD5970. Карта представляет две HD5870 на одной плате и почти на полтора года станет самым быстрым двухчиповым ускорителем на рынке. При этом потребление по сравнению с 4870 X2 увеличилось несильно — до 294 Вт.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Февраль 2010 года принес еще одну вариацию Cypress — HD5830 с активными 1120 SP, а также новинки на двух бюджетных чипах. ГП Redwood имеет 400 SP и 128-битную шину, которая поддерживает память GDDR5, GDDR3 и DDR2. Он лег в основу моделей серий HD5600 и HD5500, среди которых только младшая HD5550 получила урезанный чип. Чип Cedar — самый младший в линейке. Имея всего 80 SP и 64-битную шину памяти, он нашел приют в единственной модели — HD5450.

Radeon HD6000: последние представители TeraScale

В октябре 2010 года AMD выпускает две видеокарты, относящиеся к новой линейке — HD6870 и HD6850. В них используется чип Barts на архитектуре TeraScale 2, который по сравнению с Cypress получил меньшее количество вычислительных блоков, но обзавелся ускоренным блоком тесселяции. В ГП 14 SIMD, 224 шейдерных кластера, 1120 SP, 32 ROP и 56 TMU. Шина памяти, как и у Cypress, 256-битная с поддержкой GDDR5.

HD6870 получила полный чип, HD6850 — урезанный до 960 SP. Карты предназначались для замены HD5870 и HD5850 и были немного медленнее своих предшественников, но и стоили при этом дешевле. В апреле 2011 года появилась еще одна карта на ГП Barts, HD6790. Она растеряла почти треть SP — активными остались только 800 штук.

В ноябре 2010 года NVIDIA выпускает первого представителя серии GTX500: топовую GTX580. Карта унаследовала от предшественницы архитектуру Fermi, но лишилась ее основных недостатков — урезанного чипа и пониженной частоты. В ответ на это спустя месяц AMD представляет топовые карты нового поколения: Radeon HD6970 и HD6950.

Модели построены на чипе Cayman, который использует обновленную архитектуру TeraScale 3. Основу чипа составляют все те же суперскалярные шейдерные кластеры. Но теперь в каждом из них не пять, а четыре SP, что позволяет более эффективно загружать их. Поэтому, несмотря на то, что в Cayman оказалось чуть меньше SP, он стал немного быстрее Cypress.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Полный чип содержит 24 SIMD, 384 суперскалярных блока и 1536 SP. Вычислительные блоки разделены на две части, каждой из которой управляет отдельный Ultra-Threading Dispatch Processor. Блоков геометрии и тесселяции теперь тоже по два. Каждый из них до полутора раз быстрее, чем у предшественника. Полный чип обладает 32 блоками ROP и 96 TMU. Шина памяти осталась 256-битной, но пропускная способность за счет более быстрых чипов GDDR5 возросла до 176 ГБ/c. Среди новых технологий — поддержка сглаживания EQAA.

Флагманская HD6970 получила полный чип, а субфлагман HD6950 — урезанный до 1408 SP. Стандартный объем памяти карт был увеличен до 2 ГБ. Несмотря на это, конкуренции с GTX580 не получилось — старшая карта была на уровне GTX570, а младшая — немного медленнее ее, хотя потребляли карты довольно много: до 250 Вт. Спустя год чип Cayman ляжет в основу еще одной модели — HD6930, в чипе которой оставили 1280 активных SP.

В марте 2011 года оба производителя карт выпускают свои топовые двухчиповые ускорители: NVIDIA — GTX590, а AMD — HD6990. И тут компания отыгралась: решение конкурента было немного медленнее. Однако HD6990 поставила рекорд по энергопотреблению — целых 375 Вт.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Спустя месяц на сцену выходят HD6770 и HD6750. AMD не стала разрабатывать для карт новые чипы: обе модели представляют из себя переименованные HD5770 и HD5750 на ГП Juniper. То же относится и к HD 6350 — это переименованная HD5450 на ядре Cedar. А вот промежуток между средним производительным сегментом и откровенно бюджетным компания заполнила новыми чипами: Turks и Caicos.

Несмотря на новизну, в основе пары чипов старая архитектура TeraScale 2. Turks имеет 480 SP и 128-битную шину памяти, поддерживающую как GDDR5, так и более медленную GDDR3. Он лег в основу моделей HD 6670 и 6570. Caicos, имеющий всего 160 SP и 64-битную шину памяти DDR3, использовался в единственной модели — HD 6450.

Radeon HD7000: DirectX 11.1 и скалярная GCN

В январе 2012 года начинается новая глава в истории графики AMD. Тогда были выпущены первые карты на основе совершенно новой графической архитектуры — Graphics Core Next (GCN). В отличие от суперскалярной TeraScale, GCN является скалярной архитектурой. Это значит, что ее блоки можно нагрузить гораздо эффективнее, чем блоки предшественницы. К тому же и для неграфических вычислений такая архитектура подходит куда больше.

Основой новых ГП являются вычислительные блоки (CU). В одном блоке содержатся 4 TMU и 64 SP, поделенных на четыре группы. Каждая из них работает со своим потоком команд, которые задает планировщик исполнения, имеющийся внутри CU.

Первыми картами на основе GCN стали HD7970 и HD7950 на базе ГП Tahiti. Чип имеет 32 CU, которые образуют 2048 SP и 128 TMU. Управляют ими процессор графических команд и два движка асинхронных вычислений (ACE). Благодаря этому ГП поддерживает одновременно три потока команд — один графический и два вычислительных, каждым из которых могут заниматься произвольное число CU.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Как и предшественник, Tahiti имеет два блока обработки геометрии и тесселяции. Они были переработаны и значительно оптимизированы, благодаря чему стали от трех до четырех раз быстрее, чем у чипа прошлого поколения. Таким образом, в этом поколении один из главных недостатков карт AMD по сравнению с конкурентом — медленная работа тесселяции — был устранен.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

В прочее оснащение чипа входят 32 блока ROP. Память представляет 384-битная шина, которая вкупе с GDDR5 обеспечивает полосу пропускания 264 ГБ/c. ГП получил интерфейс PCI-E 3.0, который в очередной раз удваивает скорость «общения» карты с системой. Вдобавок к этому имеется полная поддержка DirectX 11.1, частичная — DirectX 11.2. Хотя для производства используется 28 нм техпроцесс, максимальный TDP такой же, как у предшественников — 250 Вт.

Топовая HD7970 получила полный чип, HD7950 — урезанный до 1792 SP. Обе карты имели 3 ГБ памяти и обгоняли GTX580, но реальный противник для них был представлен лишь спустя два месяца. GTX680 на старте была немного быстрее HD7970, как и вышедшая позже GTX670 по сравнению с HD7950.

Однако карты AMD могли работать на более высоких частотах, и уже летом 2012 года компания представила две обновленные модели — HD7950 Boost и HD7970 GHz Edition. Эти модели первыми получили поддержку динамического увеличения частоты ядра, аналогично технологии GPU Boost конкурирующей NVIDIA. Обновленные карты сравнялись с конкурентами, а спустя некоторое время стали обгонять их в новых играх — сказывалась оптимизация архитектуры, более высокая пропускная способность памяти и ее больший объем.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Вторая Технологии, IT, Компьютерное железо, Компьютер, Инженер, Производство, Изобретения, Процессор, История развития, Компьютерные игры, Компьютерная графика, Игровой ПК, Электроника, Микроконтроллеры, Длиннопост

Февраль 2012 года принесет бюджетный чип архитектуры GCN — Cape Verde. Он содержит 640 SP и комплектуется 128-битной шиной памяти. Одновременно будут выпущены две карты на его основе: старшая HD7770 с полным чипом и младшая HD7750 — с урезанным до 512 SP. Cтаршая модель стала первой картой компании, частота ядра которой достигла 1 ГГц. Обе модели имеют варианты с 1 и 2 ГБ памяти GDDR5. В апреле 2013 года на базе этого чипа выйдет еще одна модель — HD7730. В ней останутся активными только 384 SP, а к варианту с GDDR5 добавится более бюджетный с DDR3.

В марте 2012 года были представлены карты серии HD7800 на чипе Pitcairn. Он получил 1280 SP и 256-битную шину памяти. Старшая HD7870 получила полный чип и 2 ГБ памяти. В младшей HD7850 осталось активными 1024 SP, а к 2 ГБ варианту добавился более бюджетный с 1 ГБ памяти. В ноябре 2012 года была представлена HD7870 XT. В ее основе старший чип Tahiti, в котором остались активными 1536 SP. Помимо этого, карта получила урезанную до 256 бит шину, вследствие чего ей достались лишь 2 ГБ памяти.

Младшие линейки новой серии представляют собой переименованные карты прошлого поколения на архитектуре TeraScale 2. Все модели линеек HD7600, HD7500, HD7400 и HD7300 обладают аналогичными характеристиками с картами серий HD6600, HD6500, HD6400 и HD6300.

В апреле 2013 года выходит двухчиповая HD7990, представляющая собой пару HD7970 на одной плате. Несмотря на то, что карта вышла на год позже конкурентной GTX690, она показывала сравнимую с ней производительность и была быстрее имиджевой GTX Titan.

С выходом ОС Windows 10 карты серии HD7000 на архитектуре GCN получили частичную поддержку DirectX 12. Но полной совместимостью с новым API обзаведётся только следующее поколение карт — Radeon R200, с которого начнется значительная часть современной истории графики AMD.

Показать полностью 13
Технологии IT Компьютерное железо Компьютер Инженер Производство Изобретения Процессор История развития Компьютерные игры Компьютерная графика Игровой ПК Электроника Микроконтроллеры Длиннопост
4
64
TechSavvyZone
TechSavvyZone
3 месяца назад

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая⁠⁠

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

AMD. Второй по величине производитель дискретных графических процессоров, давний и бессменный противник NVIDIA. Как появились и развивались видеокарты AMD/ATI.

Wonder и Mach: 2D, ничего более

Компания ATI была основана задолго до NVIDIA — в 1985 году. О 3D-ускорителях графики тогда речи не шло, под «графической картой» понималась плата для вывода 2D-изображения.

Дебютной серией карт ATI стала линейка, позже получившая название Wonder. Первая модель, выпущенная в 1986 году, имела 64 КБ памяти и могла выводить как монохромное, так и цветное изображение. В первом случае поддерживалось разрешение до 720x348 точек, во втором — 320×200 при четырех цветах или вдвое меньше при 16 цветах.

Последняя модель серии под названием Wonder XL24 была выпущена в 1992 году. Она имела до 1 МБ памяти и поддерживала изображение разрешением 800x600 при 16-битной глубине цвета. Для подключения карт Wonder к системе использовалась шина ISA.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

С начала 90-х линейку Wonder постепенно сменила серия 2D-ускорителей Mach, которые были призваны разгрузить ЦП системы от «рисования» интерфейса системы и программ. Новые модели Mach выпускались вплоть до 1996 года. Последняя модель Mach 64 имела от 1 до 4 МБ видеопамяти и поддерживала вывод картинки с разрешением до 1280x1024. Ранние модели использовали шину ISA, более поздние перешли на PCI.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

3D Rage: переход в 3D

Первая карта с поддержкой 3D-ускорения была выпущена ATI в апреле 1996 года под именем 3D Rage. Чип карты производился по техпроцессу 500 нм и работал на частоте 40 МГц. Он сочетал в себе блок работы с 2D-графикой от Mach 64 с 3D-ускорителем, в составе которого один пиксельный конвейер, растровый блок (ROP) и текстурный модуль (TMU). По 64-битной шине чип соединялся с 2 МБ памяти EDO RAM, обладавшей пропускной способностью чуть больше 500 МБ/c.

Как и поздние Mach 64, карта имела исполнение PCI. В отличие от NVIDIA STG-2000, модель работала с треугольными полигонами. 3D Rage стала одной из первых карт с поддержкой DirectX 5, но OpenGL для игровых приложений был недоступен. Для демонстрации способностей карты была разработана специальная версия игры MechWarrior 2: 31st Century Combat, использующая ускорение Direct3D.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Спустя пять месяцев была выпущена обновленная 3D Rage II. Частоту ядра увеличили в полтора раза, а в качестве памяти могла использоваться как EDO RAM, так и более быстрые SGRAM/SDRAM объемом от 2 до 8 МБ. Благодаря этим изменениям и обновленным драйверам под новую (на тот момент) Windows 95, модель до двух раз опережала предшественника. Наряду с PCI карте добавили поддержку шины AGP 1x. К тому же графический чип 3D Rage II распаивался и на материнские платы — это был первый прообраз встроенной графики ATI.

3D Rage Pro: эпоха DirectX 6

В марте 1997 года ATI представила новую модель — 3D Rage Pro. Чип, лежавший в основе карты, получил новый движок полигонального рендеринга, поддержку прозрачности, тумана и бликов, таким образом став одним из первых с поддержкой DirectX 6. Он производился по техпроцессу 350 нм, что позволило достичь частоты в 75 МГц. Как и предшественник, карта могла использовать один из трех типов памяти, объем которой варьировался от 4 до 16 МБ.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Хотя 3D Rage Pro поддерживала шину PCI, она проектировалась в первую очередь для нового интерфейса AGP. Первые модели работали в режиме AGP 1x, но с выходом RIVA 128 от NVIDIA компания решила задействовать режим AGP 2x, чтобы лучше противостоять сопернику.

По производительности 3D Rage Pro был на уровне конкурента, однако сырые драйвера досаждали просадками производительности в Direct3D, а поддержка OpenGL для игр все также отсутствовала. Доработанные драйвера вышли позже, когда RIVA 128 и другая конкурирующая карта Voodoo Graphics от 3dfx стали массовыми. В итоге 3D Rage Pro не удалось завоевать популярность, хотя технически модель была достаточно продвинутой для своего времени.

В августе 1998 года была выпущена Rage XL, представляющая собой недорогую карту на базе 3D Rage Pro с памятью SDRAM.

3D Rage 128: упор на 32-битный цвет

К началу 1998 года карты Voodoo пользовались огромной популярностью. В феврале была выпущена Voodoo 2, продолжившая дело первой модели. В июне NVIDIA ответила на нее своей RIVA TNT. Конкурент от ATI вышел на рынок последним — это была пара моделей Rage 128.

В чипе Rage 128 было удвоено количество конвейеров, ROP и TMU — точно так же, как и в RIVA TNT. Благодаря новой технологии SuperScalar Rendering чип обрабатывает два пикселя в двух конвейерах одновременно. Rage 128 имеет два отдельных кэша для текстур и пикселей, повышающих эффективность работы подсистемы памяти.

За счет техпроцесса 250 нм частота ядра достигла 100 МГц. Шину памяти расширили до 128 бит, вследствие чего полоса пропускания возросла до 1.6 ГБ/c у старшей модели Rage 128 GL. Младшая Rage 128 VR получила урезанную до 64 бит шину. Карты оснащались от 8 до 32 МБ памяти SGRAM или SDRAM. Помимо дискретных карт, чип Rage 128 VR распаивался на материнские платы в качестве встроенной графики.

Rage 128 показывала сравнимую с RIVA TNT производительность, а при использовании 32-битного цвета даже опережала ее. К тому же поддержка OpenGL в этот раз имелась уже со старта. Погубило модель слишком позднее появление: выйди карта на полгода раньше, ей удалось бы отвоевать гораздо большую часть рынка.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В начале 1999 года появились более быстрые RIVA TNT2 и Voodoo 3, на что ATI ответила новыми моделями Rage 128 с приставками Pro и Ultra — но опять с опозданием в полгода. Картам добавили поддержку шины AGP 4x, ускорили ядро и память на четверть, что помогло приблизиться к оппоненту. Однако на носу была гораздо быстрая GeForce 256, и ATI нужно было чем-то ответить прямо здесь и сейчас…

Этим ответом стала первая двухчиповая карта компании — Rage Fury MAXX, выпущенная в октябре 1999 года. Два чипа от Rage 128 Pro рендерили кадры по очереди, что позволяло практически вдвое повысить производительность. Каждый из чипов имел 32 МБ памяти SDRAM.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Производительность карты приближалась к GeForce 256, но последняя все же была быстрее и выглядела предпочтительнее за счет поддержки аппаратной трансформации и освещения (T&L) и DirectX 7, которого у ATI еще не было.

Первый Radeon: DirectX 7, и даже немного больше

Битва с GeForce 256 была проиграна, но ATI не собиралась сдаваться. В ее недрах кипела разработка нового графического ядра, которое было быстрее GeForce 256 и с успехом соревновалось бы со следующим поколением конкурента. Встречайте, первый чип для карт нового семейства Radeon — R100.

R100 получил новый геометрический движок Charisma Engine, имеющий некоторые возможности более поздних вершинных шейдеров, что позволяло ATI заявлять о поддержке шейдерных эффектов. В Charisma Engine входит аппаратный блок T&L, движки смешения вершин и интерполяции по ключевым кадрам. У чипа два пиксельных конвейера, на каждый из которых приходится один блок ROP и три TMU.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Чип производился по техпроцессу 180 нм и работал на частоте до 183 МГц. ГП обладал полной совместимостью с DirectX 7, но также поддерживал некоторые функции DirectX 8: глубину резкости, размытие в движении и полноэкранное сглаживание. Шина памяти 128-битная, возможно использование как SDRAM, так и вдвое более быстрой DDR c пропускной способностью до 5.8 ГБ/c. Она используется более эффективно благодаря технологии сжатия Z-буфера под названием Hyper-Z. Radeon с памятью DDR была выпущена в апреле 2000 года, одновременно с первыми GeForce 2. Карта обладала 32 или 64 МБ памяти и чаще всего была наравне с продуктами NVIDIA при использовании 32-битного цвета, но отставала при 16-битном. Спустя два месяца была выпущена более медленная модель с памятью SDR, которая превосходила GeForce 2 MX. Позже для того, чтобы отличить карты от более новых моделей, обе Radeon вдобавок к имени получили цифровой индекс 7200.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Voodoo 4 и 5 в этот раз появились позже конкурентов. К тому времени многие игры научились использовать аппаратный T&L, которого у карт от 3dfx не было. В итоге новые модели от 3dfx чаще всего были медленнее конкурирующих решений при более высокой цене. NVIDIA воспользовалась упадком компании и в конце 2000 года купила 3dfx. С того момента на рынке остались только два серьезных конкурента — NVIDIA и ATI.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В феврале 2001 года была выпущена бюджетная Radeon VE, позже получившая номер 7000. В ее основе упрощенный чип RV100 c 64-битной шиной памяти, который является «половинкой» R100 без движка Charisma Engine и блока T&L.

Radeon 8500: продвинутый DirectX 8

В феврале 2001 года NVIDIA выпускает первую карту с поддержкой DirectX 8 — GeForce 3. В ответ на это спустя полгода ATI выпускает две новые модели: Radeon 7500 и 8500.

В составе Radeon 7500 обновленный чип RV200. Он представляет из себя R100, перенесенный на техпроцесс 150 нм, за счет чего удалось в полтора раза повысить частоту ядра. Использование памяти более быстрой DDR позволило увеличить полосу пропускания до 7.3 ГБ/c.

А вот основой Radeon 8500 стала действительно новая разработка. Чип R200 получил движок Charisma Engine II, в котором нестандартные средства для работы с геометрией сменили два вершинных шейдера. На каждый из четырех конвейеров приходится по одному блоку ROP и пиксельному шейдеру версии 1.4, которые позволяют заявлять о полной поддержке DirectX 8.1. Таким образом, R200 обладает более совершенной программируемой шейдерной архитектурой, чем его конкурент NV20.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

ГП получил поддержку TruForm — технологии, позволяющей увеличивать геометрическую сложность сцены посредством разбиения существующих полигонов на более мелкие. По сути, TruForm является собственной реализацией N-патчей DirectX 8 и предком современной тесселяции. Чип обзавелся поддержкой адаптивного сглаживания SmoothVision. А 128-битная шина памяти с быстрыми чипами DDR позволили достигнуть пропускной способности в 8.8 ГБ/c. Благодаря обновленной технологии Hyper-Z II чип более эффективно распоряжается ей по сравнению с предшественниками.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Radeon 8500 и его слегка замедленная версия 8500LE навязали соперничество семейству GeForce 3, хотя топовая модель Ti 500 была немного быстрее. Обе карты выпускались в двух версиях — с 64 и 128 МБ памяти.

Radeon 9700: первый DirectX 9

Следующих новинок ATI пришлось ждать целый год. К августу 2002 года семейство GeForce 4 уже распространилось, и пара новых моделей Radeon 9000 как раз противопоставлялась младшим GeForce 4 MX.

ATI не стала повторять ошибки NVIDIA с отсутствием шейдеров в бюджетной видеокарте. Чип RV250 получил вдвое меньше вершинных блоков и TMU по сравнению с R200, но сохранил 128-битную шину памяти, а также четыре пиксельных конвейера с ROP и пиксельным шейдером на каждом. Это позволяло ему быть быстрее конкурента при сохранении поддержки новых игр, использующих DirectX 8. А вот прямого конкурента GeForce 4 Ti компания разрабатывать не стала. Эпоха DirectX 8 подходила к закату, и ATI решила сосредоточить силы на новом чипе с поддержкой DirectX 9, который превосходил бы текущий топ NVIDIA и составил конкуренцию следующему. Встречайте, первая карта с поддержкой DirectX 9: Radeon 9700 Pro на базе чипа R300.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

R300 получил восемь пиксельных и четыре вершинных шейдера, которые значительно переработаны для поддержки шейдерной модели 2.0. Компанию им составляют восемь блоков ROP, столько же TMU и 256-битная шина памяти DDR с пропускной способностью 17.3 ГБ/c. Чип получил более качественную анизотропную фильтрацию и поддержку шины AGP 8x. Теперь доступно адаптивное сглаживание SmoothVision 2.0 на базе MSAA, которое работает значительно быстрее более ранних методов. Из-за энергопотребления, превысившего возможности шины AGP, карте впервые понадобилось дополнительное питание с помощью разъема MOLEX.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В октябре 2002 года линейка карт на чипе расширяется обычным Radeon 9700 и парой Radeon 9500/9500 Pro. Первая модель отличается от 9700 более низкими частотами, а 9500 Pro — еще и урезанной до 128 бит шиной. Radeon 9500 без приставки Pro «пострадал» больше всего: количество пиксельных шейдеров, ROP и TMU ему урезали вдвое. Впрочем, карты этого поколения славились возможностью разблокировки нерабочих блоков: программно или с помощью перепаивания резисторов. Таким образом, благодаря ловкости рук младшую карту можно было превратить в аналог старшей.

Ответ NVIDIA последовал лишь в начале 2003 года. Линейка GeForce FX5000 также поддерживала DirectX 9 и технически даже в чем-то превосходила оппонента из-за усовершенствованной шейдерной модели 2.0a. Однако перегнать топовые Radeon 9700 в новом API первые карты серии не смогли. Лишь в мае 2003 года с выходом FX5900 на чипе NV35 картам на базе R300 пришлось «подвинуться». Однако за два месяца до этого на рынке уже появился его преемник R350 с более высокими частотами.

R350 представляет собой оптимизированную и разогнанную версию R300. На нем основан обновленный флагман компании — Radeon 9800 Pro. Помимо более высоких частот чипа и памяти, карты отличаются объемом памяти: модели с 64 МБ теперь нет, зато доступна новая с 256 МБ. Старшая версия встречается с как с памятью DDR, так и с новой GDDR2. Вместе с топом был выпущен и Radeon 9800SE, повторяющий конфигурацию Radeon 9500. Чуть позже появились модели Radeon 9800 и 9800XL с полным чипом, но сниженными относительно флагмана частотами.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

За средний сегмент «отдувался» упрощенный чип RV350, представляющий собой «половинку» от R300/350 по всем блокам. Память у него 128-битная. На RV350 основаны Radeon 9600 Pro, 9600 и 9550. Radeon 9550 SE и 9600 SE также используют RV350, но с урезанной до 64 бит шиной памяти. Бюджетные модели серии Radeon 9200 базируются на RV280, который поддерживает лишь DirectX 8.1 — это реинкарнация чипа RV250, использовавшегося в Radeon 9000.

В сентябре 2003 года выходит Radeon 9800XT на чипе R360, который отличается от R350 только частотой. Ядро достигает 412 МГц, а память — пропускной способности в 23.2 ГБ/c, что помешало стать лидером выпущенной спустя месяц GeForce FX 5950 Ultra. Со сниженной частотой R360 нашел применение и в поздних Radeon 9800 Pro.

Radeon X: появление CrossFire

Карты следующего поколения вышли у конкурентов почти одновременно. В конце апреля 2004 года NVIDIA выпускает первых представителей топовой линейки GeForce 6800, на что ATI в начале мая отвечает новинками серии Radeon X800. В отличие от NVIDIA, которая использовала чип-мост HSI для реализации карт с новомодным интерфейсом PCI-E, ATI создала две версии одного чипа с разными интерфейсами — R420 (AGP 8x) и R423 (PCI-E x16). Отличались и способы подвода дополнительного питания: для AGP-карт — пара MOLEX, для PCI-E карт — один разъем 6-pin.

Внутреннее устройство новых ГП ATI достаточно схоже с конкурирующим NV40 от NVIDIA. Пиксельные шейдеры имеют по два вычислительных векторных ALU. Четыре таких шейдера и четыре TMU сгруппированы в пулы квадов, которые работают с фрагментами картинки размером 2х2 пикселя. В чипе четыре пула, что дает 16 пиксельных шейдеров и 16 TMU. Компанию им составляют шесть вершинных шейдеров и 16 блоков ROP — точно так же, как и в NV40.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Интерфейс памяти 256-битный. Используется GDDR3, пропускная способность которой у топовой модели достигает 35.8 ГБ/c. Чип получил поддержку шейдеров версии 2.0b, временного сглаживания на базе MSAA и метода компрессии текстур 3Dc, предназначенного для сжатия карт нормалей. Благодаря 130 нм техпроцессу потолок частот ГП удалось увеличить до 520 МГц, что вкупе с увеличенным количеством блоков ускорило новые карты до двух раз по сравнению с прошлым поколением.

Старшие модели X800 XT и X800 XT PE были наравне с конкурентной GeForce 6800 Ultra в большинстве новых игр, но иногда уступали в старых проектах. Для обеспечения превосходства по производительности в сентябре 2004 года ATI выпускает линейку Radeon X850 на чипе R480 (а через полгода — на его AGP-клоне R481), который является оптимизированным и разогнанным вариантом R420/R423. Модели серии X850 первыми получили поддержку технологии CrossFire, которая позволяла объединить две карты для увеличения графической производительности. Для этого требовалась особая карта CrossFire Edition, которая соединялась с обычной картой посредством специального кабеля.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Одновременно был выпущен чип R430, представляющий еще одну вариацию R420/R423, перенесенную на 110 нм техпроцесс. Он стал основой обычной X800, а также X800XL — первой карты компании, получившей разновидность с 512 МБ памяти. ГП обладает нативной поддержкой интерфейса PCI-E, а для реализации AGP-вариантов используется чип-мост Rialto.

Таким образом, линейка Radeon X800 стала довольно обширной: различные модели основывались на четырех разных чипах R4xx, отличаясь между собой частотами и количеством активных блоков. Основная масса карт оснащалась 256 МБ памяти, хотя встречались и модели со 128 МБ.

Вместе с серией X850 ATI запускает бюджетные линейки карт X600 и X300. В их основе чипы RV380 и RV370, которые являются слегка улучшенным вариантом RV350, применявшимся в прошлых сериях Radeon 9600 и 9500. В отличие от предшественника, оба чипа обладают интерфейсом PCI-E, а RV370 вдобавок производится по более тонкой 110 нм технологии. Интересной особенностью RV370 была поддержка технологии HyperMemory, позволяющей использовать для нужд ГП часть системной оперативной памяти. В середине 2005 года на базе RV370 была выпущена пара бюджетных карт Radeon X550 c интерфейсом AGP.

В декабре 2004 года компания анонсирует первые модели линейки X700 на базе нового чипа RV410. Он является «половинкой» R430 по всем блокам, за исключением вершинных шейдеров — их, как и в старшем чипе, шесть штук. Шина памяти 128-битная. Основная масса карт X700 получила полный чип, упрощению подверглись лишь модели с приставками LE и SE: обе получили 64-битную шину, а вторая — еще и урезанный по блокам чип. В январе 2007 года на базе X700 SE были выпушены две бюджетные модели серии Radeon X550 с интерфейсом PCI-E.

Radeon X1000: запоздалый DirectX 9.0c

Большинство карт прошлой серии были немного быстрее GeForce 6000, но в козырях последней была поддержка шейдеров версии 3.0, которые спустя год после выхода конкурирующих линеек понемногу станут появляться в играх. В июле 2005 NVIDIA выпустила следующее поколение карт GeForce 7000. Тогда ATI стало окончательно ясно, что пора прекращать делать ставку на шейдеры 2.x и начинать ориентироваться на третьи шейдеры.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

ATI запустила новую линейку карт с поддержкой DirectX 9.0c и шейдеров версии 3.0 в октябре 2005 года, представив сразу семь видеокарт линеек X1800, X1600 и X1300. В их основе три разных чипа: бюджетный RV515, средний RV530 и старший RV520. Все ГП получили поддержку адаптивного сглаживания прозрачных текстур.

Строение чипов подобно предшественникам, хотя есть и несколько важных отличий. У топового чипа R520 все также четыре пула квадов. В каждом из которых четверка TMU и пиксельных шейдеров, которые стали сложнее: теперь в каждом из них, помимо пары векторных ALU, имеется еще два скалярных ALU для простых операций. Используются пулы более эффективно благодаря новому блоку Ultra-Threading Dispatch Processor, который распределяет работу между ними.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Число вершинных шейдеров в чипе возросло до восьми, хотя блоков ROP 16. Контроллер памяти получил внутреннюю двунаправленную кольцевую 512-битную шину, позволившую передавать данные с меньшими задержками, но внешняя шина памяти осталась 256-битной. Применение более быстрых чипов GDDR3 увеличило полосу пропускания до 48 ГБ/c. Чипы производились по 90 нм техпроцессу, что позволило достичь 625 МГц ядру топовой модели.

R520 лег в основу топовой линейки Radeon X1800. Карты на его основе оснащались 256 или 512 МБ памяти и полным чипом, за исключением вышедшей позднее X1800 GTO с одним отключенным пулом квадов. В отличие от прошлой линейки, в этот раз топовые модели обоих производителей получились примерно равными по силам: 7800GTX и X1800 XT опережали друг друга с переменным успехом.

Средний чип RV530 получил 12 пиксельных и 5 вершинных шейдеров, 4 ROP и 4 TMU. Шина памяти у него 128-битная, возможно использование как GDDR3, так и DDR2. ГП стал основой пары моделей серии Radeon X1600. Младший RV515 имел аналогичную шину памяти и столько же блоков ROP и TMU, но намного меньше шейдеров: 4 пиксельных и 2 вершинных. Чип применялся в линейке карт Radeon X1300, младшая из которых получила урезанную до 64 бит шину. Карты линейки использовали память DDR или DDR2.

В январе 2006 года компания решает усилить свои позиции запуском карт новой серии Radeon X1900. Они базируются на новом чипе R580, основное отличие которого от R520 — увеличение количества пиксельных шейдеров с 16 до 48. Это обеспечило рост производительности в новых играх со сложной графикой. Спустя два месяца последовал ответ от NVIDIA в лице 7900 GTX, который вновь уравнял обоих конкурентов.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В конце августа ATI выпускает первую модель серии Radeon X1950 на чипе R580+. Главное отличие от обычного R580 — новая память GDDR4, которая позволила увеличить полосу пропускания до 64 ГБ/c. В октябре выходят еще две карты серии на этом чипе, а также модели на новых 80 нм чипах.

RV570 и RV560 представляют собой упрощенный R580 на новом техпроцессе 80 нм с меньшим количеством активных блоков — 36 пиксельных шейдеров и 12 ROP/TMU у старшей модели и 24 пиксельных шейдера вкупе с 8 ROP/TMU у младшей. Новые чипы получили отдельный интерфейс для CrossFire, благодаря которому отпала необходимость в главной карте и стало возможным объединить любые модели с поддержкой технологии и одинаковым ГП специальными мостиками.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

RV570 стал основой карт X1950 с приставками PRO и GT, RV560 — моделей X1650 с суффиксами GT и XT, а также X1700 SE.

Бюджетные чипы также получили обновления по 80 нм технологии. RV530 превратился в RV535, а RV515 — в RV516. На базе первого была выпущена X1650 PRO, второй нашел применение в X1550 и X1650SE.

Линейка Radeon X1000 стала последней с раздельными пиксельными и вершинными шейдерами. Следующая линейка карт получила суффикс HD, и обзавелась универсальной шейдерной архитектурой.

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

Показать полностью 20
Компьютерное железо Компьютер Технологии Инженер IT Игровой ПК Видеокарта Производство Изобретения Компьютерная графика Компьютерные игры История развития Электроника Процессор AMD Nvidia Микроконтроллеры Длиннопост
12
10
TechSavvyZone
TechSavvyZone
3 месяца назад

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности⁠⁠

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

В феврале 2024 года компания Intel представила свою обновленную дорожную карту. Этим она немного приоткрыла завесу тайны, огласив некоторые интересные особенности процессоров следующих поколений и технологий их производства.

Многие наверняка помнят, что основной для продуктов Intel долгое время являлась технология производства 14 нм. С 2015 по 2021 год именно по этому техпроцессу выпускались все десктопные процессоры Intel Core. И лишь в конце 2021 года вместе с Core 12-го поколения компания вывела на рынок новый техпроцесс Intel 7, который на самом деле является разновидностью 10 нм норм.

С этого момента в истории производства Intel началась новая глава. Десктопные модели Core 13-го и 14-го поколений продолжили использовать техпроцесс Intel 7, но в мобильных процессорах Core Ultra, представленных в конце 2023 года, компания начала использовать следующий процесс под названием Intel 4 (7 нм). В обновленном роадмапе за ним следуют будущие техпроцессы — Intel 3, Intel 20A, Intel 18A, Intel 14A и Intel 10A. Расскажем о каждом поподробнее.

Intel 3

Дальнейшее развитие идей Intel 4 найдет воплощение в техпроцессе Intel 3. Как и в прямом предшественнике, в нем используется литография в сверхжестком ультрафиолете (EUV), без которой не обойтись в таких тонких процессах.

Intel 3 уже прошел полное тестирование и готов к применению. Относительно Intel 4 показатель производительности на ватт вырастет на 18 %, что довольно неплохо при схожем процессе производства. К тому же, по сравнению с предшественником, он позволит достичь более высокой плотности транзисторов и рассчитан на более высокопроизводительные чипы.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Однако десктопные и мобильные процессоры Intel этот техпроцесс обойдет стороной. Уделом Intel 3 станут новые серверные процессоры под названием Xeon 6. Их будет две разновидности — на основе производительных (Granite Rapids) и энергоэффективных (Sierra Forest) ядер.

Выпуск Granite Rapids состоится уже во втором квартале 2024 года, а Sierra Forest — в его второй половине. Благодаря новому техпроцессу в этих чипах уместится до 288 энергоэффективных ядер.

Intel 20A

Техпроцесс Intel 20A для рядового пользователя более интересен. Ведь именно на нем будут построены процессоры 15-го поколения Core под кодовым названием Arrow Lake. Как и мобильные Meteor Lake, эти процессоры получат «Core Ultra» в названии и плиточную компоновку Foveros — впервые для десктопа.

Intel 20A, по словам компании, открывает «эру Ангстрема». Это и отражено в названии техпроцесса: 20A — 20 ангстрем, то есть 2 нм. Конечно, маркетинговые нанометры давно перестали отражать реальные размеры транзисторов, но именно этот техпроцесс должен обеспечить наиболее большой технологический скачок. В том числе, благодаря двум заметным технологическим улучшениям.

Первое их них — новые транзисторы RibbonFET Gate-All-Around (GAA). Они оснащены затвором с четырьмя каналами, который полностью их окружает. Это первое улучшение с 2012 года, когда были внедрены так называемые 3D-транзисторы FinFET, окруженные затвором с трех сторон.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

В отличие от них, транзисторы GAA занимают меньше места, благодаря чему заметно возрастает их плотность. К тому же и переключаются они при сравнимом токе быстрее.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Второе новшество — вывод сигнальных линий и линий питания с разных сторон подложки чипа. В более ранних техпроцессах оба вида линий находятся с ее фронтальной стороны. Новое решение под названием PowerVia заключается в переносе линий питания на обратную сторону подложки. Так как линии питания больше не мешают сигнальным, для последних можно упростить разводку и уменьшить длину соединений. А за счет отсутствия прямых наводок от питания и помех для сигналов становится меньше.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Проводники питания можно сделать большего сечения для использования повышенных токов, а плотность размещения транзисторов — увеличить. Благодаря такому сочетанию новые процессоры наверняка смогут достигать более высоких частот. Производительность на ватт по сравнению с техпроцессом Intel 3 возрастет до 15 %.

Intel 18A

Следующее поколение техпроцесса представляет собой усовершенствованную версию Intel 20A. В него перекочуют все новшества предшественника. Intel 18A — техпроцесс, соответствующие условным 18 ангстрем, или 1.8 нм. По сравнению с Intel 20A, он позволит увеличить показатель производительности на ватт на величину до 10 %.

Как признался глава Intel, именно на этот техпроцесс он сделал наибольшую ставку. Intel 18A должен вернуть компании лидерство в передовых технологиях производства, а также стать наиболее массово использующимся техпроцессом. На Intel 20A компания намерена обкатать технологии RibbonFET и PowerVia, поэтому он будет использоваться только в процессорах Core. А на базе 18A будут выпускаться и серверные Xeon нового поколения, и чипы, разработанные сторонними компаниями-заказчиками — к примеру, мобильные решения на архитектуре ARM.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Среди продукции компании первой на вооружение этот техпроцесс возьмут новые процессоры Xeon под кодовым названием Clearwater Forest. Это второе поколение разновидности Xeon на базе энергоэффективных ядер. В нем впервые будет применена технология Foveros Direct, которая позволит связывать кристаллы-плитки с помощью соединений гораздо меньшего размера, чем ранее.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Следом за Xeon технология производства найдет приют в процессорах Core под кодовым названием Lunar Lake. Это произойдет в конце 2024 или начале 2025 года. Как и Meteor Lake, эта линейка процессоров предназначена исключительно для ноутбуков. В десктопы новый техпроцесс попадет только в середине 2025 года с приходом процессоров Core под кодовым названием Panther Lake.

Intel 14A

В 2027 году в массовое производство будет запущен Intel 14A. Ключевое отличие от предшественников в том, что он станет первым техпроцессом, при производстве которого будет использоваться литография в сверхжестком ультрафиолете с высокой числовой апертурой (High-NA EUV). Это потребует нового оборудования для производства, поэтому на первых порах ждать бюджетных продуктов на базе 14A не стоит.

Как и в предшественниках, в Intel 14A будут использоваться транзисторы RibbonFET, а технология PowerVia второго поколения сможет обеспечить лучшие параметры питания. Intel планирует две разновидности этого техпроцесса: стандартную 14A и улучшенную 14A-E, которая увидит свет позже. Таким образом компания хочет продлить жизненный цикл технологии без перехода на новый процесс производства. Доработанные версии получат также Intel 18A и Intel 3.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Компания пока не называет предполагаемое преимущество в производительности на ватт или плотности транзисторов, так как не хочет заранее информировать конкурентов. Поэтому более подробные технические детали 14A станут известны ближе к дате запуска его тестового производства, которое начнется в 2026 году.

Intel 10A

Последний техпроцесс Intel, который упоминался ее представителями — Intel 10A. Информации о нем пока немного. Известно, что тестовое производство стартует в конце 2027 года, а готовые продукты появятся не раньше 2028-го.

Сердце ПК: Кремниевый двигатель "Intel техпроцессы 20A, 18A и 14A" особенности Компьютерное железо, Технологии, Инженер, Компьютер, IT, Процессор, Микроконтроллеры, Чип, Транзистор, Электроника, История развития, Изобретения, Производство, Intel, Длиннопост

Аналогично Intel 14A, этот техпроцесс будет использовать литографию High-NA EUV. К тому моменту она станет более зрелой и дешевой в производстве, поэтому стоит ожидать использование 10A и в массовой недорогой продукции.

Показать полностью 8
Компьютерное железо Технологии Инженер Компьютер IT Процессор Микроконтроллеры Чип Транзистор Электроника История развития Изобретения Производство Intel Длиннопост
0

Нереальный кешбэк реальными рублями

Перейти
Партнёрский материал Реклама
specials
specials

Дайте две: подписки, которых еще не существует, но мы уже готовы за них заплатить⁠⁠

Подписка на кино и музыку — это не предел. Еще бы, ведь есть даже подписка на выгоду. Но все равно как будто чего-то не хватает. Придумали еще 10 сервисов, с которыми жить станет лучше и веселее. Выбирайте, какого не хватает вам.

Дайте две: подписки, которых еще не существует, но мы уже готовы за них заплатить Опрос, Подписки, Юмор, Польза, Выгода, Длиннопост

Подписка на мемы

Каждый охотник пикабушник желает знать, где взять свежие мемы. Почему уточка в шарфе — новый тренд, как угнаться за TikTok-бабушками и зачем коту капюшон: каждый день только свежие мемы с комментариями экспертов. Станьте мем-гуру современного рунета!

Подписка на настроение

Хватит быть заложником эмоций, пора управлять ими! Сервис подберет музыку, фразы дня, отфильтрует новостную ленту, посоветует, что надеть и куда пойти, чтобы все совпадало с общим настроем. С этой подпиской вы буквально задаете тон своему дню: хотите нежный уют «как в скандинавской рекламе пледа» — пожалуйста. Надо бодрячком и по-деловому — вот вам марш, вдохновляющие цитаты и напоминание, что вы — герой. Останется только смахнуть пыль с Бэтмобиля.

Если Бэтмобиля нет, не беда: запрыгивайте в Яндекс Такси и получайте кешбэк 10% с подпиской ВТБ Плюс.

Подписка на «новое я»

Иногда так и хочется все бросить и стать другим человеком. Но с чего начать — непонятно. Эта подписка каждый месяц будет подкидывать мини-вызовы для внутренней трансформации. Например: «Неделя без кофе — проверьте, остались ли у вас чувства» или «Месяц без телефона после 6 — вспомните, как выглядят ваши стены». Маленькие шаги, большие перемены. Ну или хотя бы повод похвастаться в сторис (до 18:00, конечно).

Подписка на неловкие разговоры

Забыли, как звонить по телефону? Начинаете паниковать, когда кто-то пишет «давай голосом»? Подписка на неловкие разговоры — это спортзал для ваших коммуникативных мышц. Раз в неделю вам звонит специально обученный человек (или такой же подписчик), и вы несколько минут болтаете обо всем: как спит ваш кот, что вы пересматривали в 25-й раз на выходных и почему ананас на пицце — это грех. Главное — живой голос и никаких эмодзи!

А если хочется совместить полезное с полезным, подключите опцию «носитель языка» и обсуждайте погоду на английском, испанском или даже японском. И заодно перестанете бояться звонков от незнакомых номеров. Ну, почти.

Если у вас уже есть друзья или родственники за границей, с подпиской ВТБ Плюс вы можете совершать бесплатные переводы более чем в 100 стран ближнего и дальнего зарубежья.

Дайте две: подписки, которых еще не существует, но мы уже готовы за них заплатить Опрос, Подписки, Юмор, Польза, Выгода, Длиннопост

Подписка на коробку неожиданной радости

Это как Новый год, но без елки и не в декабре. При регистрации рассказываете сервису о себе: чем увлекаетесь, что обожаете, а от чего готовы бежать в панике. А дальше — магия. Раз в месяц курьер приносит коробку с чем-то, что заставит вас сказать: «Ого! Откуда вы знали?!» День доставки определяется случайно — сюрпризы хороши именно своей внезапностью.

Подписка на дурацкие идеи

Самое вредное состояние для мозга — это застой. Чтобы немного разогреть и встряхнуть серое вещество, сервис будет каждое утро присылать вам одну заведомо нелепую, но потенциально гениальную идею: подкаст для буренок; ресторан, в котором не разговаривают; библиотека запахов. Как знать, вероятно, что-то из этого станет отличным стартапом.

Подписка на прошлую версию интернета

Никаких алгоритмов, трендов и бесконечных сторис, только ICQ, «Помогите Кузе» и новости про новый сезон «Остаться в живых». Эта подписка — как флешбек в старый добрый интернет: вам каждый день прилетает симуляция жизни за выбранный год. Захотели 2007-й — и вот у вас релиз новой песни Тимбалэнда и «Йа креведко!» в чате. Соскучились по студенческим временам в 2010-м? Вот вам «ВКонтакте» без сторис и опрос «Тян или няша?». Своего рода цифровая машина времени, только без риска запустить временной парадокс.

Временная петля — нестареющий сюжет, но лучше наблюдать за этим явлением исключительно в кино. Это несложно: с подпиской ВТБ Плюс у вас будет бесплатный доступ в онлайн-кинотеатр Wink без рекламы.

Подписка на экстренное вдохновение

Когда мозг внезапно уходит в отпуск без предупреждения, а дедлайны машут из-за угла, активируйте подписку на вдохновение! Один клик — и вы получаете посылку с креативным топливом: письмо от виртуального наставника с легкой ноткой мотивационного пинка, подборку свежих идей, нестандартные референсы, творческие упражнения или просто ободряющее «Ты не один, у всех так бывает». Работает как ментальный энергетик, но без кофеина и подергивающегося глаза.

Подписка на пятничный ужин

Вечер пятницы, конец рабочей недели. Силы остались только на то, чтобы жевать, а готовить — вот уж увольте. Для вас есть подписка мечты: каждую неделю вам домой прилетает сет готовых блюд по мотивам выбранной кухни мира. Сегодня Италия? Ловите пасту, брускетты и настроение «мамма миа!». Захотели Мексику — получите тако, гуакамоле и мини-фиесту.

Пока этот сервис остается только нашей мечтой, воспользуйтесь Яндекс Едой. Тем более с подпиской ВТБ Плюс вы получите дополнительный кешбэк 5% на заказы. Отличный вариант избавиться от надоевшей рутины и сэкономить.

Дайте две: подписки, которых еще не существует, но мы уже готовы за них заплатить Опрос, Подписки, Юмор, Польза, Выгода, Длиннопост

Подписка на гиперлокальность

Пока все читают мировые новости, вы в курсе, что Серега из третьего подъезда опять потерял ключи, а в булочной за углом испекли хлеб в форме динозавра. Эта подписка делает из вашего района полноценную вселенную: уведомления приходят только о событиях в радиусе нескольких улиц. Благодаря ей вы узнаете, что в ларьке напротив перестали продавать ваш любимый йогурт за пять минут до того, как вы туда дойдете.

Настоящая хроника двора, в которой только новости из песочницы, мемы про местных голубей и анонсы вечеринок у соседей на балконе. Идеально, если вы хотите почувствовать себя не просто жителем района, а его полноправным участником.

Какую подписку вы бы оформили?
Всего голосов:

Все эти подписки — только наши фантазии (пока что). Но уже сейчас вы можете оформить подписку ВТБ Плюс, чтобы сделать повседневные траты немного приятнее. С ВТБ Плюс вы получаете:

  • 10 категорий кешбэка на выбор каждый месяц вместо восьми;

  • дополнительный кешбэк на сервисы Яндекс Лавка, Яндекс Еда, такси в Яндекс Go и Яндекс Маркет;

  • бесплатный доступ в онлайн-кинотеатр Wink;

  • +2% к ставке по накопительному ВТБ-счету;

  • скидку 20% на страховые продукты ВТБ и связь ВТБ Мобайл;

  • бесплатные переводы за границу и уведомления об операциях.

ПОДКЛЮЧИТЬ ПОДПИСКУ ВТБ ПЛЮС

Реклама ПАО «Банк ВТБ». ИНН: 7702070139

Показать полностью 2 1
Опрос Подписки Юмор Польза Выгода Длиннопост
157
TechSavvyZone
TechSavvyZone
3 месяца назад

Технологии: "Оперативная память" Устройство и принципы работы⁠⁠

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Оперативная память является неотъемлемым компонентом любой вычислительной системы. Как она устроена внутри, и как работает?

Немного истории

Началось всё очень давно, ещё в ХIХ веке. Именно в 1834 году Чарльз Беббидж разработал конструкцию аналитической машины. В те годы самому Чарльзу не удалось воплотить свою конструкцию в реальную жизнь из-за проблем с финансированием и отсутствием необходимых для постройки технологий.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Упрощённо, данный компьютер состоял из 4-х элементов – арифметико-логического устройства (АЛУ), устройства ввода-вывода, шины передачи данных и оперативной памяти. Как же работала оперативная память в 19 веке? Работала она за счёт сложного массива валов и шестерёнок, положение которых и «записывало» то или иное значение информационной единицы. И после этого изобретения давайте сделаем скачок на более чем 100 лет вперёд, в 40-50-ые годы ХХ века, когда начинались выпускаться электронно-вычислительные машины (ЭВМ) первого поколения.

Так как технология только зарождалась, инженеры экспериментировали с конструкциями и принципами работы ОЗУ. Таким образом, на первых порах использовалась оперативная память, работающая на электромеханических реле, на электромагнитных переключателях, на электростатических трубках и на электро-лучевых трубках. Но спустя пару лет все сошлись на одном варианте, другом – магнитные диски и магнитные барабаны.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

По своей структуре магнитные барабаны похожи на современные жёсткие диски. Ключевое отличие – на барабане считывающие головки неподвижны и время доступа полностью определяется скоростью их вращения, в то время как у жёсткого диска это определяется как скоростью вращения, так и скоростью перемещения головок по цилиндрам диска. Следующим этапом развития оперативной памяти стали массивы на ферромагнитных сердечниках, или, как её проще называли, ферритовая память. Такой вид памяти обеспечивал очень высокую скорость доступа по сравнению с магнитными барабанами, но и потреблял он больше электроэнергии.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

А самой главной проблемой что магнитных барабанов, что ферритовой памяти были габариты. Именно над исправлением этого недостатка исследователи работали на протяжении более десяти лет. И главный толчок в развитии оперативной памяти дало создание больших интегральных схем БИС), или же микросхем, и уже на них появились всеми нами известные и используемые до сих пор DRAM и SRAM, которые стали постепенно сменять ферритовую память, начиная с 70-ых годов. Какая разница между DRAM и SRAM? Если вкратце, то DRAM хранит бит данных в виде заряда конденсатора, а SRAM хранит бит в виде состояния триггера. DRAM является более экономичным видом памяти с меньшим энергопотреблением, а SRAM может похвастаться меньшим временем доступа за большую стоимость и энергопотребление. В нынешний момент SRAM используется как кэш-память процессора, так что мы подробнее перейдём к DRAM, ведь именно такую память используют при создании оперативной памяти.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Кому будет интересно почитать и освежить память, или подчерпнуть для себя что то новое, есть замечательная статья на просторах ПИКАБУ автора BootSect "История оперативной памяти".

Но давайте вернемся и все таки рассмотрим -

Что такое оперативная память

Любая вычислительная система состоит из нескольких компонентов. При этом неважно, где эта система используется — в компьютере, ноутбуке, смартфоне, планшете или даже смарт-часах. Основной принцип работы везде один: данные считываются с медленного накопителя и попадают в более быструю оперативную память. Оттуда их получает очень быстрая кеш-память центрального процессора, которая передает данные на вычислительную часть ЦП.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

В компьютерах с этим проще: память для них распространяется в виде модулей формата DIMM, на которых распаяны микросхемы памяти. В ноутбуках можно встретить как более компактные модули SO-DIMM, так и распаянную ОЗУ.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Устройство чипов памяти

Внутри микросхем памяти находится несколько слоев, соединенных друг с другом. Каждый из них разделен на кластеры, в которых находятся ячейки памяти, хранящие информацию.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Ячейка памяти состоит из конденсатора и полевого транзистора. Конденсатор может хранить электрический заряд (логическая единица) или находиться в состоянии без заряда (логический ноль). Таким образом каждая ячейка хранит один бит информации.

Транзистор выступает в роли своеобразной двери. Когда «дверь» закрыта, она удерживает заряд конденсатора. При считывании и записи информации эта «дверь» открывается. Помимо конденсатора, транзистор подключен к двум линиям — линии слов («Word Line», строка) и линии битов («Bit Line», столбец).

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Ячейки памяти расположены подобно клеткам шахматной доски. Те, которые находятся на одной линии слов, образуют страницу памяти. Операции чтения и записи производятся не с одной ячейкой, а с целой страницей памяти сразу, так как все транзисторы ячеек на одной линии слов открываются одновременно. Для операции чтения на одну линию слов подается управляющее напряжение, которое открывает все транзисторы ячеек на ней. На концах линий битов находятся усилители чувствительности (Sense Amplifier). Они распознают наличие или отсутствие заряда в конденсаторах ячеек памяти, таким образом считывая логическую единицу или логический ноль.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Конденсаторы ячеек имеют маленькие размеры и очень быстро теряют заряд. Поэтому независимо от того, нужно ли сохранять в памяти текущую информацию или записать новую, ячейки периодически перезаписываются.

Для этого, как и при чтении, управляющее напряжение подается на «двери» транзисторов ячеек по линии слов. А вот по линии битов вместо считывания производится процесс записи. Он осуществляется с помощью подачи напряжения для заряда конденсаторов нужных ячеек — то есть только тех, где должна быть логическая единица.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Передача данных и тайминги

Работа линий координируется декодером адресов строк и мультиплексором столбцов. Информация для записи в ОЗУ поступает в общий буфер данных. Оттуда она попадает в мультиплексор и в его собственный буфер, а затем — в управляющую логику, которая координирует работу ячеек памяти с учетом латентности памяти.

Данные из логики поступают в буфер декодера адресов строк, а оттуда и на сам декодер, позволяя своевременно открывать страницы памяти для операций чтения и записи. При чтении данные вновь проходят через мультиплексор и общий буфер данных, который передает их системе.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Операции декодера адреса строки и мультиплексора столбцов требуют определенных периодов времени — стробов. Строб адресов строк обозначается как RAS, адресов столбцов — как CAS. Данными характеристиками и их соотношениями определяется латентность памяти, или тайминги. Тайминги — это временные задержки между выполнением команд чтения и записи. Чем они ниже, тем быстрее работает память при прочих равных.

Тайминги выражаются не в абсолютном, а в относительном числовом значении. Оно показывает количество тактовых циклов, которое требуется памяти на выполнение операций. Или, если простым языком, во сколько раз медленнее производится та или иная операция относительно задержки передачи данных. Именно поэтому одни и те же модули ОЗУ имеют разные тайминги на разных частотах.

Для простого примера возьмем распространенную ОЗУ DDR4 с частотой 3200 МГц. Время передачи одного бита информации у нее составляет 1/3 200 000 долю секунды, или 0.3125 нс. Так как память типа DDR передает данные дважды за такт, длительность одного цикла передачи данных занимает в два раза больше времени — 0.625 нс. При тайминге, равном 16, определенная операция будет происходить за время, которое в 16 раз больше этого значения: 0.625 x 16 = 10 нс.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Основные виды таймингов — это:

  • СL (CAS Latency)

Количество тактов между получением команды чтения/записи и ее выполнением.

  • tRCD (RAS to CAS delay)

Количество тактов между открытием строки и началом выполнения операции чтения/записи по столбцу.

  • tRP (RAS Precharge Time)

Количество тактов между получением команды закрытия одной строки и открытием следующей.

  • tRAS (RAS Active Time)

Количество тактов, в течение которых строка памяти может быть доступна для чтения/записи.

  • CMD (Command Rate)

Количество тактов с момента активации чипа памяти до готовности принять команду.

Тайминги — качество

Работа памяти, вопреки стереотипу, измеряется не только герцами. Быстроту памяти принято измерять в наносекундах. Все элементы памяти работают в наносекундах. Чем чаще они разряжаются и заряжаются, тем быстрее пользователь получает информацию. Время, за которое банки должны отрабатывать задачи назвали одним словом — тайминг (timing — расчет времени, сроки). Чем меньше тактов (секунд) в тайминге, тем быстрее работают банки.

Такты. Если нам необходимо забраться на вершину по лестнице со 100 ступеньками, мы совершим 100 шагов. Если нам нужно забраться на вершину быстрее, можно идти через ступеньку. Это уже в два раза быстрее. А можно через две ступеньки. Это будет в три раза быстрее. Для каждого человека есть свой предел скорости. Как и для чипов — какие-то позволяют снизить тайминги, какие-то нет.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Частота — количество

Теперь, что касается частоты памяти. В работе ОЗУ частота влияет не на время, а на количество информации, которую контроллер может утащить за один подход. Например, в кафе снова приходит клиент и требует томатный сок, а еще виски со льдом и молочный коктейль. Бармен может принести сначала один напиток, потом второй, третий. Клиент ждать не хочет. Тогда бармену придется нести все сразу за один подход. Если у него нет проблем с координацией, он поставит все три напитка на поднос и выполнит требование капризного клиента.

Аналогично работает частота памяти: увеличивает ширину канала для данных и позволяет принимать или отдавать больший объем информации за один подход.

Тайминги плюс частота — скорость

Соответственно, частота и тайминги связаны между собой и задают общую скорость работы оперативной памяти. Чтобы не путаться в сложных формулах, представим работу тандема частота/тайминги в виде графического примера:

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Разберем схему. В торговом центре есть два отдела с техникой. Один продает видеокарты, другой — игровые приставки. Дефицит игровой техники довел клиентов до сумасшествия, и они готовы купить видеокарту или приставку, только чтобы поиграть в новый Assassin’s Creed. Условия торговли такие: зона ожидания в отделе первого продавца позволяет обслуживать только одного клиента за раз, а второй может разместить сразу двух. Но у первого склад с видеокартами находится в два раза ближе, чем у второго с приставками. Поэтому он приносит товар быстрее, чем второй. Однако, второй продавец будет обслуживать сразу двух клиентов, хотя ему и придется ходить за товаром в два раза дальше. В таком случае, скорость работы обоих будет одинакова. А теперь представим, что склад с приставками находится на том же расстоянии, что и у первого с видеокартами. Теперь продавец консолей начнет работать в два раза быстрее первого и заберет себе большую часть прибыли. И, чем ближе склад и больше клиентов в отделе, тем быстрее он зарабатывает деньги.

Так, мы понимаем, как взаимодействует частота с таймингами в скорости работы памяти.

  • Очередь — это пользователь, который запрашивает информацию из оперативной памяти.

  • Продавец — это контроллер памяти (который доставляет информацию).

  • Техника со склада — это информация для пользователя. Прилавок — это пропускная способность памяти в герцах (частота).

  • Расстояние до склада — тайминги (время, за которое контроллер найдет информацию по запросу).

Соответственно, чем меньше метров проходит контроллер до банок с электрическим зарядом, тем быстрее пользователь получает информацию. Если частота памяти позволяет доставить больше информации при том же расстоянии, то скорость памяти возрастает. Если частота памяти тянет за собой увеличение расстояния до банок (высокие тайминги), то общая скорость работы памяти упадет.

Сравнить скорость разных модулей ОЗУ в наносекундах можно с помощью формулы: тайминг*2000/частоту памяти. Так, ОЗУ с частотой 3600 и таймингами CL14 будет работать со скоростью 14*2000/3600 = 7,8 нс. А 4000 на CL16 покажет ровно 8 нс. Выходит, что оба варианта примерно одинаковы по скорости, но второй предпочтительнее из-за большей пропускной способности. В то же время, если взять память с частотой 4000 при CL14, то это будет уже 7 нс. При этом пропускная способность станет еще выше, а время доставки информации снизится на 1 нс.

Вот, как выглядят тайминги на самом деле:

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Строение чипа памяти и тайминги

В теории, оперативная память имеет скорость в наносекундах и мегабайтах в секунду. Однако, на практике существует не один десяток таймингов, и каждый задает время на определенную работу в микросхеме.

Они делятся на первичные, вторичные и третичные. В основном, для маркетинговых целей используется группа первичных таймингов. Их можно встретить в характеристиках модулей. Их намного больше и каждый за что-то отвечает. Здесь бармен с томатным соком не поможет, но попробуем разобраться в таймингах максимально просто.

Схематика чипов

Микросхемы памяти можно представить в виде поля для игры в морской бой или так:

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

В самом упрощенном виде иерархия чипа это: Rank — Bank — Row — Column. В ранках (рангах) хранятся банки. Банки состоят из строк (row) и столбцов (column). Чтобы найти информацию, контроллеру необходимо иметь координаты точки на пересечении строк и столбцов. По запросу, он активирует нужные строки и находит информацию. Скорость такой работы зависит от таймингов.

Первичные

CAS Latency (tCL) — главный тайминг в работе памяти. Указывает время между командой на чтение/запись информации и началом ее выполнения.

RAS to CAS Delay (tRCD) — время активации строки.

Row Precharge Time (tRP) — прежде чем перейти к следующей строке в этом же банке, предыдущую необходимо зарядить и закрыть. Тайминг обозначает время, за которое контроллер должен это сделать.

Row Active Time (tRAS) — минимальное время, которое дается контроллеру для работы со строкой (время, в течение которого она может быть открыта для чтения или записи), после чего она закроется.

Command Rate (CR) — время до активации новой строки.

Вторичные

Второстепенные тайминги не так сильно влияют на производительность, за исключением пары штук. Однако, их неправильная настройка может влиять на стабильность памяти.

Write Recovery (tWR) — время, необходимое для окончания записи данных и подачи команды на перезарядку строки.

Refresh Cycle (tRFC) — период времени, когда банки памяти активно перезаряжаются после работы. Чем ниже тайминг, тем быстрее память перезарядится.

Row Activation to Row Activation delay (tRRD) — время между активацией разных строк банков в пределах одного чипа памяти.

Write to Read delay (tWTR) — минимальное время для перехода от чтения к записи.

Read to Precharge (tRTP) — минимальное время между чтением данных и перезарядкой.

Four bank Activation Window (tFAW) — минимальное время между первой и пятой командой на активацию строки, выполненных подряд.

Write Latency (tCWL) — время между командой на запись и самой записью.

Refresh Interval (tREFI) — чтобы банки памяти работали без ошибок, их необходимо перезаряжать после каждого обращения. Но, можно заставить их работать дольше без отдыха, а перезарядку отложить на потом. Этот тайминг определяет количество времени, которое банки памяти могут работать без перезарядки. За ним следует tRFC — время, которое необходимо памяти, чтобы зарядиться.

Третичные

Эти тайминги отвечают за пропускную способность памяти в МБ/с, как это делает частота в герцах.

Отвечают за скорость чтения:

  • tRDRD_sg

  • tRDRD_dg

  • tRDRD_dr — используется на модулях с двусторонней компоновкой чипов

  • tRDRD_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Отвечают за скорость копирования в памяти (tWTR):

  • tRDWR_sg

  • tRDWR_dg

  • tRDWR_dr — используется на модулях с двусторонней компоновкой чипов

  • tRDWR_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Влияют на скорость чтения после записи (tRTP):

  • tWRRD_sg

  • tWRRD_dg

  • tWRRD_dr — используется на модулях с двусторонней компоновкой чипов

  • tWRRD_dd — для систем, где все 4 разъема заняты модулями ОЗУ

А эти влияют на скорость записи:

  • tWRWR_sg

  • tWRWR_dg

  • tWRWR_dr — используется на модулях с двусторонней компоновкой чипов

  • tWRWR_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Скорость памяти во времени

Итак, мы разобрались, что задача хорошей подсистемы памяти не только в хранении и копировании данных, но и в быстрой доставке этих данных процессору (пользователю). Будь у компьютера хоть тысяча гигабайт оперативной памяти, но с очень высокими таймингами и низкой частотой работы, по скорости получится уровень неплохого SSD-накопителя. Но это в теории. На самом деле, любая доступная память на рынке как минимум соответствует требованиям JEDEC. А это организация, которая знает, как должна работать память, и делает это стандартом для всех. Аналогично ГОСТу для колбасы или сгущенки.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Стандарты JEDEC демократичны и современные игровые системы редко работают на таких низких настройках. Производители оставляют запас прочности для чипов памяти, чтобы компании, которые выпускают готовые планки оперативной памяти могли немного «раздушить» железо с помощью разгона. Так, появились заводские профили разгона XMP для Intel и DOHCP для AMD. Это «официальный» разгон, который даже покрывается гарантией производителя.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Профили разгона включают в себя информацию о максимальной частоте и минимальных для нее таймингах. Так, в характеристиках часто пишут именно возможности работы памяти в XMP режимах. Например, частоте 3600 МГц и CL16. Чаще всего указывают самый первый тайминг как главный.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Чем выше частота и ниже тайминги, тем круче память и выше производительность всей системы.

Ранги памяти

Модули ОЗУ имеют на борту несколько микросхем памяти. Внешняя ширина шины модуля определенного вида ОЗУ — величина постоянная, но внутреннее устройство зависит от поколения памяти и рангов.

Чипы памяти на обычном одноранговом модуле образуют один блок данных. Доступ к нему осуществляется по каналу определенной ширины. Если у модуля два ранга, то доступ к чипам памяти осуществляется через два таких канала. При четырех рангах — через четыре, при восьми рангах — через восемь. В модулях памяти для обычных компьютеров встречается одно- или двухранговая организация. Количество рангов более двух характерно для серверной ОЗУ.

Технологии: "Оперативная память" Устройство и принципы работы Технологии, Компьютерное железо, IT, Компьютер, Производство, Оперативная память, Чип, Инженер, Изобретения, История развития, Электроника, Микроконтроллеры, Транзистор, Длиннопост

Внешняя ширина шины модуля во всех случаях остается равной ширине канала доступа к одному рангу. Поэтому центральный процессор системы может обращаться только к одному рангу единовременно. Но пока один ранг модуля передает данные, другие могут подготавливать данные для следующей передачи. Поэтому многоранговая память при прочих равных быстрее, хоть и ненамного.

Ширина внешней шины модуля и одного ранга зависит от поколения и типа оперативной памяти.

  • Обычная ОЗУ DDR4 (и более старых поколений DDR) имеет ширину в 64 бита. Все биты используются для передачи данных.

  • Серверная ОЗУ DDR4 (и более старых поколений DDR) имеет ширину в 72 бита. 64 бита используются для передачи данных, 8 бит — для коррекции ошибок.

  • ОЗУ DDR5 имеет ширину в 80 бит, поделенных на два канала по 40 бит. В каждом канале 32 бита используются для передачи данных, а 8 бит — для коррекции ошибок.

В виду ограничения фотоматериалов

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

Показать полностью 20
Технологии Компьютерное железо IT Компьютер Производство Оперативная память Чип Инженер Изобретения История развития Электроника Микроконтроллеры Транзистор Длиннопост
12
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии