Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
Отправляйся в погоню за легендарными сокровищами Бабы Яги в 3D!
А в это время Баба Яга отправится в погоню за тобой.

Убеги от Бабы Яги

Аркады, Мидкорные, 3D

Играть

Топ прошлой недели

  • AlexKud AlexKud 38 постов
  • SergeyKorsun SergeyKorsun 12 постов
  • SupportHuaport SupportHuaport 5 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня

YouTube + Радиолюбители

С этим тегом используют

Музыка Юмор Вертикальное видео Политика Игры Фильмы Песня Электроника Радиоэлектроника Радио Радиотехника Своими руками Радиодетали Все
150 постов сначала свежее
5
sergsv1
3 дня назад

Блок питания на трёх КРЕН-ках: просто, надёжно, удобно⁠⁠

В радиолюбительской практике часто возникает необходимость получить сразу несколько стандартных напряжений: +12 В, +9 В и +5 В. Например, +12 В нужно для усилителей или реле, +9 В — для логики, а +5 В — для питания микроконтроллеров.

Чтобы не собирать отдельные блоки питания на каждое напряжение, можно воспользоваться каскадным включением трёх линейных стабилизаторов серии 78xx — это удобное и надёжное решение, особенно для лабораторного применения.

Блок питания на трёх КРЕН-ках: просто, надёжно, удобно Электроника, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Блок питания, Источник питания, Стабилизатор напряжения, Видео, YouTube, Длиннопост

🔧 Принцип работы схемы

На вход схемы подаётся переменное напряжение 220 В через выключатель SA1 и предохранитель FU1, после чего оно поступает на силовой трансформатор T1, который понижает его до нужного уровня (обычно 15–18 В переменного напряжения на вторичке).

Далее:

  1. Мостовой выпрямитель (VD2) преобразует переменку в постоянное напряжение.

  2. Конденсатор C4 (4700 мкФ × 50 В) сглаживает пульсации.

  3. Питание поступает на стабилизатор 7812 (DA3), который выдает стабильные +12 В.

  4. Далее эти +12 В подаются на 7809 (DA2), затем на 7805 (DA1), получаем +9 В и +5 В соответственно.

Для каждой КРЕН-ки установлен свой выходной фильтрующий конденсатор (C1–C3, по 0.47 мкФ), что улучшает устойчивость работы и фильтрацию пульсаций. Можно еще добавить и электролитические конденсатора. Например на 1000 мК

Также установлен индикатор питания на светодиоде VD1 с резистором R1 (2.7 кОм) — он загорается, когда на выходе появляется напряжение.

⚡ Преимущества каскадного включения КРЕН-ок:

  • ✅ Минимум деталей — все стабилизаторы легко доступны и недороги.

  • ✅ Разгрузка стабилизаторов — каждая следующая ступень снижает нагрузку на предыдущую.

  • ✅ Пониженное тепловыделение — за счёт ступенчатого понижения напряжения.

  • ✅ Универсальность — подходит для питания сразу нескольких устройств.

🛠 Что важно учитывать:

Компонент Рекомендации

  • Трансформатор Вторичка не менее 15–18 В переменного, ток — от 1 А

  • Конденсатор C4 Ёмкость не менее 4700 мкФ, напряжение не ниже 35–50 В

  • Стабилизаторы КРЕН12, КРЕН9, КРЕН5 или импортные 7812, 7809, 7805

  • Охлаждение Рекомендуется поставить радиатор хотя бы на 7812

🔌Модернизация схемы

Блок питания на трёх КРЕН-ках: просто, надёжно, удобно Электроника, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Блок питания, Источник питания, Стабилизатор напряжения, Видео, YouTube, Длиннопост

🔋 Где пригодится такая схема?

  • Как Лабораторный блок питания для начинающих

  • Для испытаний схем

  • В макетах и отладочных платах

  • Для питания Arduino, реле, логики, усилителей

📎 Заключение

Собрать универсальный блок питания с выходами +12 В / +9 В / +5 В — несложно. Достаточно использовать три стабилизатора серии 78xx, один трансформатор, и несколько конденсаторов. Такая схема проста в повторении и обеспечивает стабильное питание сразу нескольких потребителей.

Показать полностью 2 1
[моё] Электроника Радиолюбители Радиоэлектроника Радиотехника Радиодетали Блок питания Источник питания Стабилизатор напряжения Видео YouTube Длиннопост
3
37
sergsv1
27 дней назад
Arduino & Pi

Двухканальный цифровой вольтметр с графиком и шкалой на Arduino⁠⁠

🧾 Описание проекта

Этот проект представляет собой двухканальный цифровой вольтметр на базе Arduino, предназначенный для одновременного измерения входного и выходного напряжения, а также отображения максимального зафиксированного значения и реального графика изменения напряжения во времени.

Двухканальный цифровой вольтметр с графиком и шкалой на Arduino Arduino, Радиолюбители, Электроника, Вольтметр, Амперметр, Мультиметр, Радиоэлектроника, Радиотехника, Хобби, Видео, YouTube, Длиннопост

Вольтметр отображает:

🟢 Входное напряжение (V In)

🔵 Выходное напряжение (V Out)

🔺 Максимальное выходное напряжение (V Max)

📉 График изменения выходного напряжения

📊 Вертикальную шкалу напряжения справа

Это отличный проект для начинающих радиолюбителей и разработчиков лабораторных блоков питания: он наглядно показывает работу стабилизаторов, поведение напряжения под нагрузкой и позволяет оценивать динамику процессов.

🔧 Используемые компоненты

Двухканальный цифровой вольтметр с графиком и шкалой на Arduino Arduino, Радиолюбители, Электроника, Вольтметр, Амперметр, Мультиметр, Радиоэлектроника, Радиотехника, Хобби, Видео, YouTube, Длиннопост

⚙️ Схема подключения

Двухканальный цифровой вольтметр с графиком и шкалой на Arduino Arduino, Радиолюбители, Электроника, Вольтметр, Амперметр, Мультиметр, Радиоэлектроника, Радиотехника, Хобби, Видео, YouTube, Длиннопост

🔌 Подключение компонентов

🖥️ OLED-дисплей:

GND → GND

VCC → 5V

SCL → A5

SDA → A4

🎛️ Измерение напряжений:

Arduino измеряет напряжения через аналоговые входы A0 и A1. Но напрямую подавать на них более 5 В опасно. Поэтому используются резистивные делители напряжения.

📥 Делитель для входного напряжения (V In → A0):

Верхний резистор: 40 кОм

Нижний резистор: 10 кОм

Входной сигнал подаётся на верхний резистор

Средняя точка подключается к A0

Позволяет измерять до 25 В

📤 Делитель для выходного напряжения (V Out → A1):

Верхний резистор: 40 кОм

Нижний резистор: 10 кОм

Средняя точка подключается к A1

Такой делитель даёт коэффициент ≈ 1/5, что позволяет измерять до 25 В

⚠️ Подбирайте резисторы с учётом нужного диапазона. Программа изначально рассчитана на вход 0–5 В, поэтому при использовании делителей нужно изменить формулу расчёта напряжения.

⚙️ Как работает программа

Программа построена на основе двух объектов класса VoltMeter, каждый из которых отвечает за измерение напряжения по одному из входов.

А также один экземпляр класса Oscilloscope (осциллограф)

📦 Смотри раздел "Скетч Arduino"

Основные этапы работы:

Измерение напряжений:

Выполняется analogRead() на пинах A0 и A1.

Полученные значения преобразуются в вольты: voltage = raw * (5.0 / 1023.0);

При необходимости можно умножать результат на коэффициент делителя, например voltage *= 2.0;

Отображение данных:

Все показания (V In, V Out, V Max) отображаются в верхней части дисплея крупным текстом.

Используется шрифт TextSize(1) для чёткости и экономии места.

Фиксация максимума:

В каждом измерении программа сравнивает текущее значение с предыдущим максимумом.

При нажатии на кнопку (подключенную к D2) максимум сбрасывается.

График напряжения:

Отдельный класс Oscilloscope сохраняет последние измерения в буфере.

В нижней части дисплея рисуется линия, отображающая изменение напряжения во времени.

График занимает 110 пикселей по горизонтали и не наезжает на шкалу.

Вертикальная шкала справа:

Сегментная шкала (10 делений) показывает текущий уровень выходного напряжения.

Обновляется при каждом цикле измерения.

🧠 Дисплей

Размещение основных блоков отображения на экране OLED дисплея

Отображение на дисплее

Программа строит интерфейс в несколько этапов:

Верхняя часть дисплея — отображает входное и максимальные значения напряжения

Средняя часть — напряжение на выходе блока питания.

Нижняя часть — график напряжения во времени, построенный с использованием массива graphBuffer[], в котором хранятся последние 128 измерений. Этот массив сдвигается каждый раз и отображается как ломаная линия, повторяя форму изменения напряжения.

Правая часть — визуальный уровень напряжения в виде сегментной шкалы, где каждый сегмент активен в зависимости от уровня сигнала.

Такой подход позволяет использовать OLED-дисплей максимально эффективно: информативно и красиво.

📜 Скетч Arduino

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128
#define SCREEN_HEIGHT 64
#define OLED_RESET -1

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);

const int inputPin = A0; // Входное напряжение
const int outputPin = A1; // Выходное напряжение
const int resetButtonPin = 2; // Кнопка сброса максимума

#define GRAPH_HEIGHT 20
#define GRAPH_WIDTH 110 // Оставляем место справа под шкалу
uint8_t graphBuffer[GRAPH_WIDTH];

// Класс вольтметра
class VoltMeter {
private:
int pin;
float voltage;
float maxVoltage;

public:
VoltMeter(int analogInputPin) { // Кнструктор класса
pin = analogInputPin;
voltage = 0.0;
maxVoltage = 0.0;
}

void measure() { // Метод -измерение
int raw = analogRead(pin);
voltage = raw * (5.0 / 1023.0);
if (voltage > maxVoltage) {
maxVoltage = voltage;
}
}

void resetMax() { // Метод - сброс максимального значения
maxVoltage = voltage;
}

float getVoltage() { // Метод - получить измеренное напряжение
return voltage;
}

float getMax() { // Метод - получить максимальное напряжение
return maxVoltage;
}
};

// Класс осциллограф
class Oscilloscope {

public:
Oscilloscope() { // Кнструктор класса
// pin = analogInputPin;
}


void updateGraph(float voltage) {
for (int i = 0; i < GRAPH_WIDTH - 1; i++) {
graphBuffer[i] = graphBuffer[i + 1];
}
uint8_t newY = map(voltage * 100, 0, 500, 0, GRAPH_HEIGHT);
graphBuffer[GRAPH_WIDTH - 1] = newY;
}

void drawGraph() {
int baseY = SCREEN_HEIGHT - 1;
for (int x = 0; x < GRAPH_WIDTH - 1; x++) {
display.drawLine(x, baseY - graphBuffer[x], x + 1, baseY - graphBuffer[x + 1], SSD1306_WHITE);
}
}

void drawScale(float value) {
const int segments = 10;
const int startX = SCREEN_WIDTH - 10; // Правая сторона экрана
const int startY = 58;
const int segWidth = 8;
const int segHeight = 4;
const int gap = 2;

int activeSegments = map(value * 100, 0, 500, 0, segments);

for (int i = 0; i < segments; i++) {
int y = startY - i * (segHeight + gap);
if (i < activeSegments) {
display.fillRect(startX, y, segWidth, segHeight, SSD1306_WHITE);
} else {
display.drawRect(startX, y, segWidth, segHeight, SSD1306_WHITE);
}
}
}
};

VoltMeter vinMeter(inputPin); //Экземпляр класса вольтметр V In
VoltMeter voutMeter(outputPin); // Экземпляр класса вольтметр V Out
Oscilloscope oscill; //Экземпляр класса осциллограф

void setup() {
pinMode(resetButtonPin, INPUT_PULLUP);
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(10, 28);
display.println("Digital Voltmeter");
display.display();
delay(1500);
}

void loop() {
vinMeter.measure();
voutMeter.measure();

if (digitalRead(resetButtonPin) == LOW) {
vinMeter.resetMax();
voutMeter.resetMax();
delay(300);
}

float vin = vinMeter.getVoltage();
float vout = voutMeter.getVoltage();
float vmax = voutMeter.getMax();

oscill.updateGraph(vout);
display.clearDisplay();

display.setTextSize(1);
display.setCursor(0, 0);
display.print("V In: ");
display.print(vin, 2);
display.println(" V");

display.setCursor(0, 10);
display.print("V Max: ");
display.print(vmax, 2);
display.println(" V");

display.setCursor(0, 20);
display.print("V Out: ");
display.print(vout, 2);
display.println(" V");

oscill.drawGraph();
oscill.drawScale(vout);

display.display();
delay(200);
}

🧠 Советы и доработки

✅ Добавить коэффициент делителя прямо в класс VoltMeter, чтобы учесть масштабирование.

💾 Сохранять максимум в EEPROM, чтобы он не сбрасывался при перезагрузке.

🧲 Добавить третью строку: ток или мощность, если есть токовый шунт.

📈 Изменить масштаб графика для отображения высокого напряжения.

⚡ Применение

Настройка и тестирование лабораторных блоков питания.

Измерение и контроль напряжения в проектах Arduino.

Демонстрация работы стабилизаторов напряжения.

Учебные и демонстрационные стенды.

Показать полностью 2 1
[моё] Arduino Радиолюбители Электроника Вольтметр Амперметр Мультиметр Радиоэлектроника Радиотехника Хобби Видео YouTube Длиннопост
13
7
sergsv1
2 месяца назад

Секреты стабилизаторов LM78** серии или как сделать импульсный стабилизатор из линейного⁠⁠

Превращаем LM7805 в ШИМ-контроллер: гибридный импульсный стабилизатор 5 В своими руками

⚙️ Назначение и особенности схемы

На первый взгляд — это обычный стабилизатор напряжения с использованием популярной микросхемы LM7805. Однако при внимательном рассмотрении видно: устройство работает в импульсном режиме, используя транзистор BD242 как ключевой элемент. Это превращает схему из линейным стабилизатора в импульсный. А LM7805 в ШИМ-контроллер, позволяя обеспечить выход 5 В с высоким КПД и хорошей токовой отдачей.

Секреты стабилизаторов LM78** серии или как сделать импульсный стабилизатор из линейного Электроника, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Стабилизатор напряжения, Блок питания, Источник питания, Преобразователь, Видео, YouTube, Длиннопост

Загляните на мой Телеграмм КАНАЛ Азбука РадиоСхем

Идея схемы

На базе широко распространённого стабилизатора LM7805 реализуем DC/DC преобразователь с высоким КПД. Вместо обычного линейного режима микросхема работает в импульсном (ШИМ) режиме с использованием внешнего p-n-p транзистора (BD242), дросселя и диода Шоттки.

Такой подход позволяет достичь более высоких токов , при этом схема остаётся простой и доступной для повторения даже начинающим радиолюбителям.

Как построить Лабораторный БП на LM317 с фиксированными уровнями НАПРЯЖЕНИЯ для новичков

Подробный разбор схемы

Входной каскад

  • J2 — разъём для подключения источника питания 24 В DC.

  • C1 (47 мкФ) — электролит для сглаживания начальных пульсаций и выбросов.

  • R1 (47 Ом) — ограничивает ток в базу транзистора, формируя условия для импульсной работы.

Импульсный модуль

  • Q1 — BD242 (NPN транзистор):Работает в ключевом режиме: включается и выключается с частотой, определяемой динамикой обратной связи.
    Основная задача — подавать энергию на дроссель L1 и тем самым заряжать выходной конденсатор C2.

  • IC1 — LM7805:Используется здесь не как линейный стабилизатор в традиционном смысле.
    Он контролирует напряжение на выходе и задаёт уровень для обратной связи, косвенно влияя на длительность включения транзистора.

ШИМ-функциональность и фильтрация

  • L1 (680 мкГн) — дроссель сглаживает импульсы, формируя стабильное постоянное напряжение.

  • C2 (470 мкФ) — конечный фильтр, накопительный элемент, сглаживающий выход.

  • D1 — 1N5817:Диод Шоттки с низким прямым падением и быстрым восстановлением.
    Позволяет току дросселя течь при закрытом транзисторе (freewheeling режим).

  • R2 и R3 — формируют цепь обратной связи. Они передают информацию о состоянии выхода в управляющую часть схемы.

Как это работает

  1. Первоначальный запуск
    После включении питание поступает через R1 и LM7805 на выход. Напряжение также подаётся на базу транзистора Q1, который открывается. Через L1 начинает протекать ток, заряжая выходной конденсатор C2.

  2. Установка напряжения
    Когда напряжение на выходе достигает 5 В, LM7805 закрывается. Ток через резистор R1 прекращается и Базовый ток Q1 исчезает, и транзистор закрывается.

  3. Импульсный режим
    После выключения Q1, ток через дроссель L1 также прекращается.  Но в дросселе накоплено магнитное поле и происходит самоиндукция. Ток начинает опять течь только в противоположную сторону через диод D1, обеспечивая непрерывное питание нагрузки. Когда напряжение на выходе немного проседает, LM7805 снова начинает проводить, и цикл повторяется.

  4. Автоматический переход в линейный режим
    При низкой нагрузке (или её отсутствии) транзистор Q1 остаётся закрытым, и схема ведёт себя как обычный линейный стабилизатор — выходной ток течёт только через LM7805. Это упрощает работу при холостом ходе и повышает надёжность.

Характеристики и КПД

  • При входе 24 В и выходе 5 В, КПД достигает 60–65%, что значительно лучше обычного линейного регулятора.

  • При использовании LM7812/7815 и выходах 12 В / 15 В КПД возрастает до 75%.

  • При этом схема не требует сложных контроллеров, трансформаторов или микросхем с ШИМ.

Гибкость: другие напряжения

Хотите 12 В или 15 В? Просто замените LM7805 на LM7812 или LM7815. Чтобы обеспечить стабильную работу в ШИМ-режиме при повышенном напряжении,

Практические рекомендации

  • Резистор R1 можно подбирать под нужный порог включения ключа.

  • Используйте радиаторы для транзистора Q1 1 А.

  • Для повышения КПД — замените BD242 на MOSFET и подберите схему драйвера.

  • При желании можно добавить индикатор перегрузки

Высоковольтный Регулируемый источник ПИТАНИЯ от 0 до 300 вольт на IRF740

Преимущества схемы

  • Повышенный КПД по сравнению с линейными стабилизаторами.

  • Простая реализация ШИМ на дискретных элементах.

  • Поддержка больших токов за счёт внешнего транзистора.

  • Меньшая тепловая нагрузка на LM7805.

Показать полностью 1 2
[моё] Электроника Радиолюбители Радиоэлектроника Радиотехника Радиодетали Стабилизатор напряжения Блок питания Источник питания Преобразователь Видео YouTube Длиннопост
0

Попробовать мобильный офис

Перейти
Партнёрский материал Реклама
specials
specials

Мобильный офис до 100 тысяч рублей⁠⁠

Ноутбуки используют не только для работы: на них смотрят сериалы, редактируют фото, запускают игры и монтируют ролики. Поэтому теперь требования к устройству такие: быть легким для дороги, надежным для горящих дедлайнов и стильным, чтобы не прятать в переговорке. А еще — легко работать в связке с другими гаджетами.

Протестировали TECNO MEGABOOK K15S вместе со смартфоном TECNO CAMON 40 и наушниками TECNO в рабочих и бытовых сценариях от Zoom-звонков до перелета, а теперь рассказываем, как себя показала техника.

Первое впечатление от дизайна ноутбука

Первое, что заметно — это вес. При диагонали 15,6 дюйма и полностью металлическом корпусе K15S весит всего 1,7 кг. Это примерно на 15% меньше, чем аналоги. Устройство не обременяет ни в офисе, ни в такси. Ноутбук поместился в стандартный городской рюкзак, было удобно достать его в кафе за завтраком и по дороге в такси, чтобы быстро отработать клиентские правки.

1/4

Дизайн сдержанный, без ярких акцентов, с матовой поверхностью. Правда, на ней остаются следы от рук. Так что если приходится постоянно открывать ноутбук в присутствии клиентов или партнеров, лучше купить прозрачный кейс. Визуально и тактильно устройство ощущается надежно: не выскальзывает и не двигается по столу, благодаря специальным резиновым накладкам на задней части.

Шарнир работает мягко: чтобы открыть крышку даже одной рукой, не нужно придерживать корпус. Чтобы показать коллеге или клиенту презентацию, достаточно раскрыть экран на 180°. Это удобно и для работы лежа, и для подставок, которые требуют определенного угла обзора.

Также отметим 9 портов: USB-A, USB-C, HDMI, слот для карты памяти — можно забыть о переходниках.

В TECNO MEGABOOK K15S предустановлен Windows 11. Ноутбук готов к работе сразу после включения. Никаких лишних установок и обновлений. Все настроено и оптимизировано для вашей многозадачности.

Экран: яркая картинка и комфорт ночью

Экран — 15,6 дюйма, IPS-матрица с разрешением Full HD. Углы обзора отличные: изображение остается четким, даже если смотреть сбоку, цвета не искажаются. Есть антибликовое покрытие. Тестировали ноутбук при разном освещении: можно спокойно работать у окна. Когда солнце бьет прямо в экран, текст по-прежнему остается читаемым, картинки не искажаются. Это редкость в бюджетных моделях.

1/2

Неважно, работаете вы ночью или играете, выручит клавиатура с регулируемой четырехуровневой подсветкой. При среднем уровне в темноте все видно, глаза не устают. Из плюсов для тревожных людей: включали ноутбук в самолете и электричке, никто вокруг не жаловался на яркость. Все регулируется кнопками, не нужно лишний раз заходить в настройки.

Стеклокерамический крупный тачпад — 15 см. Он не залипает, не промахивается, срабатывает с первого касания. Не возникает дискомфорта, даже если несколько часов редактировать документы без мышки. После перехода с других устройств немного непривычно, что тачпад работает в двух направлениях: нижняя часть отзывается нажатием, верхняя — касанием.

В кнопку питания встроен сканер отпечатка пальцев. К нему можно быстро привыкнуть, особенно если сидишь в опенспейсе или работаешь в дороге. Один легкий тап пускает в систему даже с мокрыми руками. Безопасно, удобно и не нужно постоянно вводить пароли.

Производительность: рендерим видео, открываем вкладки

Ноутбук работает на AMD Ryzen 7 5825U (опционально можно выбрать версию техники Intel Core i5-13420H). Восьмиядерный AMD с поддержкой 16 потоков подходит для ресурсоемких операций вроде рендеринга или работы с большими массивами данных. Встроенная графика Radeon справляется с редактированием видео в Full HD или играми.

1/4

Во время монтажа 30-минутного ролика в DaVinci Resolve и параллельной работе в Photoshop с несколькими большими PSD-файлами система сохраняла стабильность. Не было ни зависаний, ни заметного падения производительности. Ноутбук уверенно держит в фоне 10 приложений одновременно. Если запущены браузер с 20 вкладками, видеозвонок в Telegram, Excel с объемной таблицей и софт для монтажа, система не тормозит и не перегревается. Переход между окнами остается плавным, ничего не «проседает», даже при одновременном скачивании файлов и редактировании видео.

Базовая комплектация включает 16 ГБ оперативной памяти в двух слотах. При необходимости можно легко увеличить этот показатель до 32 ГБ, заменив стандартные модули на более емкие. Помимо установленного SSD на 1 ТБ предусмотрен дополнительный слот, поддерживающий диски объемом до 2 ТБ.

Чтобы во время нагрузки системы охлаждения не выходили из строя, в ноутбук встроен эффективный вентилятор, способный рассеивать до 35 Вт тепла. Устройство не греется, его спокойно можно держать на коленях. Это решение дополнено тремя режимами работы, которые переключаются простой комбинацией клавиш Ctrl+Alt+T. Тихий режим идеален для работы ночью или в общественных местах, сбалансированный подходит для повседневных задач. Производительный, на котором запускали рендеринг видео и игры, практически не шумит.

Автономность: 15 часов без подзарядки

Протестили автономность MEGABOOK K15S в условиях, знакомых каждому деловому путешественнику. Утром перед вылетом зарядили ноутбук до 100% и взяли его в рейс Москва — Калининград. В зале ожидания провели созвон, потом три часа смотрели сериал и в дороге до отеля редактировали документы. К моменту приезда оставалось 40% заряда: хватило бы еще на пару часов продуктивной работы.

1/3

MEGABOOK K15S может автономно работать до 15 часов и позволяет не оглядываться на индикатор заряда. Заявленное время достигается при типичном офисном использовании: одновременная работа с документами в Word и Excel, ведение переписки, видеоконференции, веб-серфинг.

Если все же понадобится, за  час восполняется до 70% батареи. Компактный адаптер мощностью 65 Вт на базе нитрида галлия поместился даже в карман пиджака. Один блок питания заряжает и ноутбук, и смартфон, и наушники. Экономия места: не нужно никаких дополнительных проводов.

Звук, который реально слышно

В TECNO MEGABOOK K15S установлены два мощных динамика по 2.5 Вт. Звук с глубокими низами, без пластикового дребезжания, объемный. Благодаря DTS можно смотреть видео даже в шумном помещении. В тестах специально включали сцены с шагами и выстрелами: локализация настолько точная, что в наушниках нет необходимости.

Та же стабильность и в микрофоне. Благодаря AI-шумоподавлению голос передается чисто. Во время тестовых звонков из оживленного кафе собеседник не услышал ни разговоры за соседним столом, ни городской шум. И все это — на расстоянии до пяти метров.

Кстати, о созвонах. В ноутбуке встроена обновленная камера. Она отслеживает положение лица, а еще есть физическая шторка приватности. Например, можно закрыть шторку для комфортных видеоконференций.

Для тех, кто предпочитает гарнитуру, идеально подойдут беспроводные наушники TECNO FreeHear 1 из экосистемы бренда. Когда не хотелось делиться разговорами с окружающими, подключали их. Чистый звук с акцентом на средние частоты, 11-мм драйверы, которые выдают неожиданную детализацию. Музыку слушать приятно: и фоновый плейлист на телефоне, и вечерний сериал на ноутбуке. Автономно работают наушники 6 часов, с кейсом — до 30 часов. 

1/2

Bluetooth 5.4 обеспечивает стабильное соединение на расстоянии до 10 метров. Удобная C-образная форма разработана специально для длительного ношения — после восьмичасового рабочего дня в ушах не возникает дискомфорта. Наушники поддерживают одновременное подключение к ноутбуку и смартфону. Переключение между устройствами происходит быстро и без заминок.

Через фирменное приложение Welife можно выбрать один из четырех эквалайзеров и отследить местоположение гарнитуры в случае утери. А еще кастомизировать виджет для управления наушниками. Функция настройки персонализированного дизайна доступна для устройств на Android и позволяет гибко изменить внешний вид окна подключения: вплоть до установки фоновой картинки или собственного фото.

Первые пару использований может потребоваться время, чтобы привыкнуть к нестандартной форме вкладышей, но уже с третьего раза они надеваются вслепую за секунду. Что особенно приятно:  собеседники отмечают, что звук от микрофона более приятный и четкий, чем у дорогих известных моделей.

Бесшовная синхронизация со смартфоном

Благодаря функции OneLeap ноутбук синхронизируется со смартфоном TECNO. Подключение происходит за пару секунд: достаточно один раз подтвердить сопряжение. После этого открывается доступ к бесшовному переключению между устройствами — объединенному буферу обмена, дублированию экранов и передаче файлов без кабелей и пересылок в мессенджерах.

Функция выручила, когда нужно было открыть приложение, у которого нет веб-версии. Удобно работает и буфер обмена: скопировал текст на одном устройстве — вставил на другом. Например, код, полученный в сообщении на телефоне, вводится в браузере на ноутбуке. Экономит минуты, а иногда и нервы. А когда в дороге пропал Wi-Fi, ноутбук сам подключился к мобильному интернету через смартфон.

1/2

TECNO CAMON 40 и сам по себе — мощный рабочий инструмент.  Смартфон выделяется камерой высокого качества 50 Мп, ярким AMOLED-экраном 120 Гц и множеством функций, которые упрощают процесс мобильной съёмки и использование искусственного интеллекта TECNO AI.

Телефон работает на HIOS 15.0.1 на базе Android 15.В фирменную оболочку встроен искусственный интеллект:

  • Голосовой помощник Ella. Отвечает на вопросы, помогает с задачами и управлением устройством.

  • Решение задач. Наводите камеру на задачу, ИИ решает ее.

  • AI Редактор фотографий. Интеллектуальная обработка в одно касание.

  • Быстрый поиск. Находит адрес на экране и запускает навигацию, распознает объекты и события, автоматически добавляет их в календарь.

Технические характеристики

  • Процессор и память. 8 ядер, 16 потоков, Кэш L3 16 МБ, частота до 4.5 ГГц Графический процессор AMD Radeon™ graphics SSD 512 ГБ или 1 ТБ, М.2, 2280, PCle 3.0 Nvme DDR4 16 ГБ, 3200 МГц.

  • Дисплей. 15.6", TFT, Full HD (1920×1080), 16:9, 280нит, 45% NTSC, 16.7 млн цветов, 60 Гц, 141 ррі.

  • Веб-камера. 1 Мп, шторка приватности.

  • Порты. 9 портов: 1*TF Card (microSD), 1*HDMI 1.4, 1*USB-A 3.1,

    1*USB-A 3.2, 1*3.5mm аудиовход, *Ethernet RJ45 до 1 Гбит, 2*Туре-С (Full Function), 1*слот для замка Kensington.

  • Другое. Сканер отпечатка пальца в кнопке питания. Клавиатура с подсветкой (4 уровня яркости). Тачпад с поддержкой одновременно 4 касаний.

  • Батарея. 70 Вт∙ч (6150 мА∙ч), Li-Pol, 11.55 B 65 Вт Type-C GaN, 20 В, 3.25 А, кабель 1.8 м (Туре-С-Type-C).

  • Габариты. 17.3 мм (высота), 359.5 мм (ширина), 236 мм (глубина).

  • Вес. 1,7 кг.


Если хотите создать собственную экосистему, в которой технологии подстроятся под ритм дня, попробуйте технику TECNO. Мощный ноутбук, быстрый смартфон и наушники соединяются в единое пространство. Быстрое переключение между устройствами, синхронизация файлов и стабильное соединение без лишних настроек.

КУПИТЬ НОУТБУК TECNO

Реклама TECNO Mobile Limited, Юридический адрес: Flat N, 16/F., Block B, Универсальный промышленный центр, 19-25 Shan MeiStreet, Fotan, New Territories, Гонконг

Показать полностью 17
Электроника Гаджеты Ноутбук Длиннопост
13
sergsv1
2 месяца назад

Как сделать Лабораторный БП на LM317 с фиксированными уровнями НАПРЯЖЕНИЯ для новичков⁠⁠

Надёжный регулируемый Источник Питания на LM317: от 1,5В до 15В

Многие устройства с автономным питанием используют напряжения, кратные 1,5 В – это стандартное значение для одного гальванического элемента (батарейки). Однако в стационарных условиях гораздо выгоднее перейти на питание от сети, чтобы не расходовать батареи. Здесь на помощь приходит сетевой источник питания, позволяющий заменить элементы питания стабильным напряжением из розетки.

Как сделать Лабораторный БП на LM317 с фиксированными уровнями НАПРЯЖЕНИЯ для новичков Электроника, Электротехник, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Радиоуправляемые модели, Блок питания, Стабилизатор, Видео, YouTube, Длиннопост

Рассмотрим простую, надёжную и удобную схему на популярной микросхеме LM317, позволяющую получать фиксированные значения напряжения от 1,5В до 15В с шагом 1,5В. Устройство особенно полезно для питания радиоконструкторов, датчиков, измерительной и аудиотехники, а также для зарядки аккумуляторов.

Загляните на мой Телеграмм КАНАЛ Азбука РадиоСхем

Схема источник питания на LM317

На рисунке показана схема сетевой источник питания для аппаратуры:

Трансформатор на схеме не показан, потому что это может быть практически любой силовой трансформатор с выходным переменным напряжением в пределах 15-20V.

Даже можно использовать китайский трансформатор с двойной вторичной обмоткой 9-0-9V, используя крайние выводы, а средний отвод не подключая в схему.

🧩 Устройство и принцип действия

Схема состоит из трёх основных частей:

  1. Выпрямитель на диодах VD1–VD4 (1N4004) – Переменное напряжение 18V (от 15 до 20V) поступает на мостовой выпрямитель на диодах VD1-VD4. Выпрямитель преобразует переменное напряжение от трансформатора в постоянное.

  2. Фильтрующий конденсатор C1 – сглаживает пульсации.

  3. Регулируемый стабилизатор на LM317 – задаёт выходное напряжение.

При указанных на схеме величинах сопротивления резисторов R1-R14. На выходе схемы можно выбрать одно из десяти фиксированных напряжений:
1,5В, 3В, 4,5В, 6В, 7,5В, 9В, 10,5В, 12В, 13,5В и 15В.

Переключение значений осуществляется механическим переключателем S1, который подключает соответствующий резистор из набора R2–R14.

Высоковольтный Регулируемый источник ПИТАНИЯ от 0 до 300 вольт на IRF740

Как работает стабилизация

Микросхема LM317 регулирует выходное напряжение в зависимости от сопротивлений в цепи обратной связи:

Как сделать Лабораторный БП на LM317 с фиксированными уровнями НАПРЯЖЕНИЯ для новичков Электроника, Электротехник, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Радиоуправляемые модели, Блок питания, Стабилизатор, Видео, YouTube, Длиннопост

В этой схеме резистор R1 = 330 Ом остаётся постоянным, а R2 (R2-R14) выбирается переключателем. Именно этот подбор сопротивлений формирует нужное напряжение.

На выходе стоит конденсатор C2 на 100 мкФ – он фильтрует выход и обеспечивает устойчивую работу при изменении нагрузки. Диод VD5 защищает LM317 от обратного напряжения, которое может возникнуть при отключении питания.

Важные моменты

  • LM317 требует разницу между входным и выходным напряжением не менее 3В для стабильной работы.

  • Используйте радиатор для LM317, особенно при нагрузке более 200 мА.

  • Величины напряжений, указанные на схеме, могут немного отличаться из-за допуска резисторов. Если нужно точно — подбирайте резисторы вручную или ставьте подстроечные.

Факты и советы

  • LM317 был разработан в 1970-х и используется до сих пор из-за своей надёжности и простоты.

  • Благодаря встроенной тепловой защите и ограничению тока, LM317 прощает многие ошибки новичков.

  • Можно использовать прецизионные резисторы с допуском 1% для более точного напряжения.

  • Если требуется плавная регулировка – можно заменить переключатель переменным резистором.

Как сделать Стабилизатор тока на LM317 с плавной регулировкой

Заключение

Этот источник питания — отличное решение для лаборатории, мастерской или радиолюбительского уголка. Простота сборки, доступность компонентов и возможность точной настройки делают его незаменимым помощником при разработке и ремонте электроники.

Показать полностью 2 1
[моё] Электроника Электротехник Радиолюбители Радиоэлектроника Радиотехника Радиодетали Радиоуправляемые модели Блок питания Стабилизатор Видео YouTube Длиннопост
8
20
sergsv1
2 месяца назад
Лига Радиолюбителей

Высоковольтный Регулируемый источник ПИТАНИЯ от 0 до 300 вольт на IRF740⁠⁠

Регулируемый источник питания от 0 до 300 вольт

Регулируемый источник питания с диапазоном напряжения от 0 до 300 вольт является важным инструментом для радиолюбителей и электронщиков. Позволяя тестировать и разрабатывать различные электронные устройства.

Схема как вы понимаете линейная и больших токов с неё не получить.  Но это не всегда и нужно.

Высоковольтный Регулируемый источник ПИТАНИЯ от 0 до 300 вольт на IRF740 Электроника, Блок питания, Радиолюбители, Радиоэлектроника, Радиотехника, Видео, YouTube, Длиннопост

Чаще возникает ситуация когда нужно запитать какую-то схему или просто провести какой-то эксперимент.

И нужно Высокое напряжение с небольшими токами, а такого под рукой и нет.

Вот как раз на помощь приходят такого рода схемы.

В этой статье мы подробно рассмотрим принцип работы такого источника питания, его основные компоненты и особенности, уделяя особое внимание пониманию для начинающих радиолюбителей.

Загляните на мой Телеграмм КАНАЛ Азбука РадиоСхем

Основные компоненты и их функции

Рассмотрим ключевые элементы схемы регулируемого источника питания:

  1. Трансформатор (Tr1 1:1): Обеспечивает гальваническую развязку между сетью переменного тока 220 В и цепями источника питания, повышая безопасность работы. В данной схеме используется трансформатор с коэффициентом трансформации 1:1, то есть напряжение на выходе трансформатора примерно равно входному напряжению.

  2. Выпрямительный мост (диоды D1-D4): Преобразует переменное напряжение, поступающее с трансформатора, в пульсирующее постоянное напряжение. Диоды, способные выдерживать обратное напряжение до 1000 В и прямой ток до 1 А, подходят для данной схемы.

  3. Сглаживающий конденсатор (C1): Сглаживает пульсации после выпрямления, обеспечивая более стабильное постоянное напряжение на выходе.

  4. Регулирующий элемент (MOSFET IRF740): Полупроводниковый прибор, который управляет подачей напряжения на выход. В данной схеме используется мощный MOSFET-транзистор IRF740, способный выдерживать высокие напряжения и токи.

  5. Управляющий транзистор (VT2 BC337): Биполярный транзистор, который управляет работой MOSFET, обеспечивая регулировку выходного напряжения.

  6. Резистор шунта (R2 3,3 Ом): Ограничивает ток через управляющий транзистор, защищая его от перегрузки.

  7. Переменный резистор (VR1): Позволяет пользователю устанавливать желаемое выходное напряжение, изменяя управляющее напряжение на затворе MOSFET.

Эффективный способ сглаживания Пульсаций по Питанию: схема Электронного ДРОССЕЛЯ

Принцип работы схемы

  1. Преобразование напряжения: Переменное напряжение 220 В поступает на первичную обмотку трансформатора Tr1, который обеспечивает гальваническую развязку и передает напряжение на вторичную обмотку.

  2. Выпрямление: Выпрямительный мост, состоящий из диодов D1-D4, преобразует переменное напряжение в пульсирующее постоянное.

  3. Сглаживание пульсаций: Конденсатор C1 сглаживает пульсации, обеспечивая более стабильное постоянное напряжение.

  4. Регулировка напряжения: Переменный резистор VR1 позволяет изменять напряжение на затворе MOSFET IRF740, регулируя его проводимость и, соответственно, выходное напряжение. Управляющий транзистор VT2 BC337 усиливает сигнал управления для MOSFET.

  5. Ограничение тока: Резистор R2 ограничивает ток через управляющий транзистор, предотвращая его повреждение при перегрузках.

Важные замечания для начинающих

  • Безопасность превыше всего: Работа с высокими напряжениями требует особой осторожности. Всегда проверяйте изоляцию и правильность соединений перед подачей питания.

  • Качество компонентов: Использование качественных компонентов повышает надежность и долговечность устройства.

  • Теплоотвод: MOSFET IRF740 при работе может выделять значительное количество тепла. Рекомендуется установить радиатор для эффективного отвода тепла.

  • Калибровка: После сборки устройства рекомендуется проверить и откалибровать выходное напряжение с помощью точного вольтметра.

Можно также упростить схему и входную часть заменить на готовый модуль с высоким выходным напряжением.

Допустим вот такого плана:

Высоковольтный Регулируемый источник ПИТАНИЯ от 0 до 300 вольт на IRF740 Электроника, Блок питания, Радиолюбители, Радиоэлектроника, Радиотехника, Видео, YouTube, Длиннопост

Интересный факт

MOSFET-транзисторы, такие как IRF740, широко используются не только в источниках питания, но и в аудиоусилителях, системах управления двигателями и даже в современных электромобилях благодаря их высокой эффективности и быстродействию.

Понимание работы регулируемого источника питания и его компонентов является фундаментальным для радиолюбителей. Такие знания позволяют не только собирать собственные устройства, но и глубже понимать принципы работы электроники в целом.

Показать полностью 2 1
[моё] Электроника Блок питания Радиолюбители Радиоэлектроника Радиотехника Видео YouTube Длиннопост
7
19
sergsv1
3 месяца назад
Лига Радиолюбителей

Автоматический Контроль напряжения в СЕТИ: как собрать защиту своими руками⁠⁠

Схема контроля напряжения в сети: автоматическое отключение потребителя при отклонении напряжения

Рассмотрим схему, которая автоматически отключает потребителя, если напряжение в сети выходит за заданные пределы. Эта схема особенно полезна для защиты чувствительного оборудования от перепадов напряжения. Давайте разберём, как она работает и как её собрать.

Автоматический Контроль напряжения в СЕТИ: как собрать защиту своими руками Электроника, Электричество, Радиолюбители, Радиоэлектроника, Радиотехника, Видео, YouTube, Яндекс Дзен (ссылка), Длиннопост

Основная идея схемы

Основные компоненты схемы

  1. Микросхема LM3914 — индикаторная микросхема, которая используется для контроля напряжения. Она имеет 10 выходов, каждый из которых соответствует определённому уровню напряжения.

  2. Оптопара U1 — обеспечивает гальваническую развязку между управляющей схемой и силовым ключом.

  3. Симистор VS1 — управляет подачей напряжения для потребителя.

  4. Диод VD1 — выпрямляет переменное напряжение подаваемое на вход контроллера.

  5. Конденсатор C2 — сглаживает пульсации напряжения.

  6. Резисторы R3-R5 — образуют делитель напряжения для настройки диапазона чувствительности схемы.

  7. Подстроечный резистор R5 — позволяет точно настроить порог срабатывания схемы.

Как сделать Стабилизатор тока на LM317 с плавной регулировкой

1. Датчик напряжения

  • Напряжение сети ~220 В выпрямляется диодом VD1 и сглаживается конденсатором C2.

  • Делитель напряжения на резисторах R3-R5 определяет уровень постоянного напряжения, которое подаётся на вход микросхемы LM3914.

2. Микросхема LM3914

  • Микросхема работает в режиме точечной индикации, то есть только один из её выходов активен в зависимости от входного напряжения.

  • При номинальном напряжении в сети (например, 220 В) активен 6-й выход (вывод 14), к которому подключена оптопара U1.

3. Управление потребителем

  • Когда активен 6-й выход микросхемы, ток через светодиод оптопары U1 открывает симистор VS1, и напряжение подаётся на потребитель.

  • Если напряжение отклоняется вверх или вниз на одну ступень (например, становится меньше 188 В или больше 242 В), 6-й выход закрывается, оптопара выключается, и симистор отключает потребитель.

Настройка схемы

  1. Подстройка делителя напряжения:С помощью подстроечного резистора R5 настройте схему так, чтобы при номинальном напряжении в сети (220 В) был активен 6-й выход микросхемы.
    Для настройки можно использовать ЛАТР (лабораторный автотрансформатор) и вольтметр.

  2. Регулировка быстродействия:Быстродействие схемы зависит от ёмкости конденсатора C2. Увеличьте ёмкость для замедления реакции схемы или уменьшите для ускорения.

Возможные доработки

  1. Индикация отклонения напряжения:Добавьте светодиоды к неиспользуемым выходам микросхемы LM3914. Это позволит визуально определить, насколько напряжение отклонилось от нормы.

  2. За основу подключения дополнительных светодиодов можно взять базовую схему:

Автоматический Контроль напряжения в СЕТИ: как собрать защиту своими руками Электроника, Электричество, Радиолюбители, Радиоэлектроника, Радиотехника, Видео, YouTube, Яндекс Дзен (ссылка), Длиннопост
  1. Расширение диапазона нормального напряжения:Соедините соседние выходы микросхемы через диоды (например, 1N4148). Это позволит расширить диапазон нормального напряжения.

  2. Замена компонентов:Диод VD1 можно заменить любым маломощным выпрямительным диодом с напряжением не ниже 400 В.
    Вместо оптопары U1 и симистора VS1 можно использовать мощный оптосимистор или твердотельное реле.

Практические советы

  1. Безопасность: Поскольку схема работает с сетевым напряжением, соблюдайте осторожность при монтаже и настройке.

  2. Охлаждение: Симистор VS1 может нагреваться при больших токах, поэтому установите его на радиатор.

  3. Тестирование: Используйте ЛАТР и вольтметр для точной настройки схемы.

Итог

Эта схема — отличное решение для автоматического отключения потребителя при отклонении напряжения в сети. Она проста в сборке и настройке, а также может быть доработана под конкретные задачи. Если у вас есть вопросы или идеи по улучшению схемы, пишите в комментариях — обсудим!

Показать полностью 2 1
[моё] Электроника Электричество Радиолюбители Радиоэлектроника Радиотехника Видео YouTube Яндекс Дзен (ссылка) Длиннопост
9
13
sergsv1
3 месяца назад
Лига Радиолюбителей

Как сделать Стабилизатор тока на LM317 с плавной регулировкой⁠⁠

Стабилизатор тока на LM317 с плавной регулировкой

LM317 — это популярный интегральный стабилизатор, который чаще всего используется для регулировки напряжения. Однако он может быть также применён в качестве стабилизатора тока, что полезно для зарядки аккумуляторов, питания светодиодов и других устройств, где важно поддерживать постоянный ток.

Рис 1

Как сделать Стабилизатор тока на LM317 с плавной регулировкой Электроника, Стабилизатор, Стабилизация, Стабилизатор напряжения, Блок питания, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, YouTube, Видео, Длиннопост

Также очень удобно использовать блок питания со стабилизацией тока для ремонта различной электроники.

В данной статье мы разберём нестандартную схему стабилизатора тока на LM317 с дополнительными компонентами, которые улучшают её функциональность. В отличие от классической схемы, здесь присутствуют два диода и слаботочный переменный резистор, что позволяет плавно регулировать выходной ток практически от нуля и до максимального значения, допустимого для LM317.

Описание работы схемы

Схема состоит из следующих ключевых компонентов:

  • LM317 (регулятор тока);

  • Резистор ШУНТ (задающий ток);

  • Переменный резистор (для плавной регулировки тока);

  • Два диода (используются для создания дополнительного падения напряжения и более точной регулировки тока).

Работа схемы основывается на том, что LM317 поддерживает постоянное падение напряжения между своим выходом OUT (вывод 2) и управляющим входом ADJ (вывод 1).

В классической схеме стабилизатора тока LM317 сопротивление задающего резистора напрямую определяет ток через нагрузку, согласно формуле:

I = 1.25V / R

Однако в предложенной модификации введены дополнительные элементы:

  • Переменный резистор изменяя сопротивление позволяет увеличивать или уменьшать разность напряжения между 1 и 2 выводом LM317 не изменяя сопротивление самого шунта, а только влияя на выходной ток в широком диапазоне.

  • Два диода создают дополнительное падение напряжения (около 1,5 В), которое подаётся на переменный резистор, что позволяет плавно регулировать ток практически от нуля.

Стабилизированный источник питания 12 В / 5 А: просто, надежно, эффективно!

Отличия от классической схемы стабилизатора тока

Схема представленная выше на рисунке 1. В отличие от классической схемы(рисунок 2) где основной ток протекает через сопротивление переменного резистора.

И это в свою очередь накладывает некоторое ограничение при выборе регулятора. Резистор должен быть мощным, габаритный и как правило проволочный, чтобы выдерживать большой ток. И также он будет подвержен нагреванию из-за протекания большого тока.

Как сделать Стабилизатор тока на LM317 с плавной регулировкой Электроника, Стабилизатор, Стабилизация, Стабилизатор напряжения, Блок питания, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, YouTube, Видео, Длиннопост

Рис 2

  1. Регулируемость: В классической схеме выходной ток фиксирован, так как зависит только от резистора. В новой схеме введён переменный резистор, позволяющий изменять ток в реальном времени.

  2. Стабильность: Дополнительные диоды помогают компенсировать изменения напряжения, снижая влияние температурных колебаний.

  3. Широкий диапазон регулировки: Благодаря падению напряжения на диодах, регулировка возможна от практически нулевого значения до максимального тока, допустимого для LM317.

  4. Расширенный функционал: Возможность точной настройки тока делает схему более универсальной и малогабаритной.

А также есть возможность сразу купить готовый отличный Лабораторный БЛОК Питания со стабилизацией напряжения и тока

Как сделать Стабилизатор тока на LM317 с плавной регулировкой Электроника, Стабилизатор, Стабилизация, Стабилизатор напряжения, Блок питания, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, YouTube, Видео, Длиннопост

NICE-POWER Программируемый Лабораторный импульсный Источник ПИТАНИЯ  30 В 10 А Регулируемый  Регулятор напряжения, тока и Функция памяти

Возможные применения

  1. Зарядка аккумуляторовПозволяет заряжать аккумуляторы с контролем тока, что предотвращает их перегрев и продлевает срок службы.

  2. Питание светодиодовСветодиоды требуют стабильного тока, а не напряжения. Данная схема идеально подходит для их питания.

  3. Токовая защита схемИспользуется как предохранительное устройство, ограничивающее ток в цепи, предотвращая выход из строя компонентов.

  4. Использование в лабораторных источниках питанияПрименяется в качестве регулятора тока в лабораторных блоках питания, обеспечивая безопасное тестирование компонентов.

📙 Эффективный способ сглаживания Пульсаций по Питанию: схема Электронного ДРОССЕЛЯ

Заключение

Модифицированная схема стабилизатора тока на LM317 с дополнительными элементами значительно расширяет её возможности по сравнению с классическим вариантом. Благодаря плавной регулировке и улучшенной стабильности схема подходит для множества практических применений в электронике.

При сборке схемы важно правильно подобрать номиналы резисторов и диодов, чтобы обеспечить нужный диапазон регулировки тока. Также следует учитывать тепловой режим работы LM317 и использовать радиатор при высоких нагрузках.

Диоды  так же стоит подбирать по мощности. Чтобы они с запасом выдерживали протекающие через них ток

Эта схема — отличный вариант для тех, кто хочет построить простой, но эффективный стабилизатор тока с возможностью регулировки.

Показать полностью 3 1
[моё] Электроника Стабилизатор Стабилизация Стабилизатор напряжения Блок питания Радиолюбители Радиоэлектроника Радиотехника Радиодетали YouTube Видео Длиннопост
20
7
sergsv1
3 месяца назад

Обзор трансформатора ТС-250: схема обмотки и параметры⁠⁠

Трансформатор ТС-250: характеристики, устройство и применение

Введение

Трансформаторы серии ТС-250 — это силовые понижающие трансформаторы, предназначенные для использования в блоках питания цветных телевизоров которые выпускались в СССР,  а также часто применялись ради любителями в различных конструкциях.

Они обладают высокой надежностью и обеспечивают стабильное напряжение для различных потребителей.

Обзор трансформатора ТС-250: схема обмотки и параметры Электроника, Блок питания, Трансформеры, Трансформатор, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Видео, YouTube, Длиннопост

В данной статье рассмотрим конструктивные особенности, технические параметры, схемы подключения и применение трансформаторов серии ТС-250.

Конструкция и устройство

Трансформаторы ТС-250 выпускаются на О-образных сердечниках типа ПЛ, изготовленных из стальной ленты толщиной 0,35 мм марки Э-320, с сечением 21×45 мм. Это обеспечивает низкие потери на вихревые токи и повышает КПД устройства.

Обзор трансформатора ТС-250: схема обмотки и параметры Электроника, Блок питания, Трансформеры, Трансформатор, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Видео, YouTube, Длиннопост

Основные конструктивные элементы:

  • Магнитопровод из электротехнической стали, выполненный по схеме «броневого» сердечника.

  • Обмотки, намотанные медным проводом с эмалевой изоляцией, защищенные пропиткой.

  • Клеммная колодка, обеспечивающая удобное подключение.

Номинальная мощность этих трансформаторов составляет 250 Вт. Первичная обмотка рассчитана на 220 В, подключение осуществляется к выводам 1 и 1′, при этом выводы 2 и 2′ замыкаются между собой.

Повышающий высоковольтный DC-DC преобразователь (150-250V) на MAX1771 и IRF740

Некоторые трансформаторы последних выпусков могут не иметь вывода 3, что означает, что они рассчитаны исключительно на 220 В.

Обзор трансформатора ТС-250: схема обмотки и параметры Электроника, Блок питания, Трансформеры, Трансформатор, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Видео, YouTube, Длиннопост

Разновидности и параметры трансформаторов серии ТС-250

Трансформаторы серии ТС-250 имеют несколько модификаций: ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М, ТС-250-2МР, ТС-250-2П. Все они обладают схожими параметрами и могут быть взаимозаменяемыми.

Трансформаторы ТС-250-2М, ТС-250-2МР и ТС-250-2П имеют меньший вес и габариты по сравнению с ТС-250, ТС-250-1, ТС-250-2, а также немного пониженные напряжения на выводах 5-5′.

Основные параметры:

  • Мощность: 250 Вт

  • Напряжение первичной обмотки: 220 В

  • Напряжения вторичных обмоток:6,3 В / 5 А (для накала ламп)
    18 В / 0,7 А
    250 В / 0,9 А (для анодного питания)
    5 В / 3 А (для выпрямителей)

  • Частота сети: 50 Гц

  • Габариты: зависят от модели

  • Масса: 3-4 кг

Полные данные по моточным параметрам представлены в таблице ниже:

Обзор трансформатора ТС-250: схема обмотки и параметры Электроника, Блок питания, Трансформеры, Трансформатор, Радиолюбители, Радиоэлектроника, Радиотехника, Радиодетали, Видео, YouTube, Длиннопост

Важно учитывать, что указанные параметры могут отличаться у конкретного экземпляра трансформатора из-за изменений в технических условиях заводов-изготовителей.

Стабилизированный источник питания 12 В / 5 А: просто, надежно, эффективно!

Подключение трансформатора

Для правильного подключения трансформатора ТС-250 следует учитывать маркировку выводов:

  1. Первичная обмотка подключается к сети 220 В на выводы 1 и 1′. Выводы 2 и 2′ замыкаются.

  2. Вторичные обмотки подключаются в соответствии с требуемым напряжением:Выводы 5-5′ дают напряжение 6,3 В для накала ламп.
    Выводы 9-9′ дают напряжение 127 В (анодное питание).
    Выводы 8-18-18′-8′ формируют другие напряжения.

Если требуется анодное напряжение, необходимо использовать выпрямительный мост с фильтрующими конденсаторами.

Применение трансформаторов ТС-250

ТС-250 применяются в:

  • Ламповых усилителях – для питания анодных и накальных цепей.

  • Радиопередатчиках и ретрансляторах – обеспечивают питание ламповых передатчиков.

  • Лабораторных блоках питания – благодаря наличию нескольких обмоток подходят для регулируемых источников питания.

  • Телевизорах и радиоприемниках – использовались в ламповой аппаратуре.

Заключение

Трансформаторы ТС-250 – это надежные силовые устройства, обеспечивающие стабильное напряжение для радиоаппаратуры и промышленных приборов.

Их разнообразие модификаций позволяет выбрать подходящую модель для различных нужд, а схемы подключения дают возможность эффективного использования этих трансформаторов в различных устройствах.

Показать полностью 4 1
[моё] Электроника Блок питания Трансформеры Трансформатор Радиолюбители Радиоэлектроника Радиотехника Радиодетали Видео YouTube Длиннопост
6
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии