Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр
Погрузитесь в логическую головоломку: откручивайте болты из планок на самых сложных уровнях! Вы не только расслабитесь в конце сложного дня, но еще и натренируете свой мозг, решая увлекательные задачки. Справитесь с ролью опытного мастера? Попробуйте свои силы в режиме онлайн бесплатно и без регистрации!

Головоломка. Болты и Гайки

Казуальные, Гиперказуальные, Головоломки

Играть

Топ прошлой недели

  • AlexKud AlexKud 38 постов
  • SergeyKorsun SergeyKorsun 12 постов
  • SupportHuaport SupportHuaport 5 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня

Deep learning + Программирование

С этим тегом используют

Искусственный интеллект Машинное обучение IT Программист IT юмор Разработка Python Картинка с текстом Юмор Все
1 пост сначала свежее
6
CrowsHaveEyes
CrowsHaveEyes
7 месяцев назад
Лига программистов

Qwen 2.5 и Qwen 2.5 Coder - перспективная коллекция LLM для систем агентов⁠⁠

Разработчикам приложений Generative AI стоит обратить внимание на новую коллекцию моделей Qwen 2.5 и Qwen 2.5 Coder. С сентября 2024 года эти модели привлекают внимание разработчиков благодаря своей эффективности.

Во-первых, веса Qwen 2.5 доступны в версиях от 0.5B параметров — это очень легковесная модель — до 72B. Посередине есть 3, 7, 14 и 32B, каждую из которых вполне можно запускать локально, если у вас есть, например RTX 3080 с 16ГБ видеопамяти. В этом поможет квантизация (особенно в случае с 32B). Квантованные веса в форматах GGUF, GPTQ, AWQ есть в официальном репозитории.

Для более быстрого инференса и файнтюнинга Qwen 2.5 можно арендовать облачный GPU и работать с этой моделью так же, как с привычной нам Llama. Я показывал примеры файнтюнинга последней в предыдущих статьях, используя облачные видеокарты и стек Huggingface Transformers (код Qwen 2.5 добавлен в одну из последних версий transformers).

Есть базовая модель и версия Instruct, вы можете пробовать файнтюнить обе и смотреть, какой результат вам лучше подходит. Но если вы хотите взять готовую модель для инференса, то лучше конечно Instruct. Благодаря разнообразию размеров и форматов, Qwen может быть полезен для разных типов приложений - клиент-серверных, или десктопных, и даже на мобильных - вот как это выглядит:

Qwen 2.5 и Qwen 2.5 Coder - перспективная коллекция LLM для систем агентов Искусственный интеллект, Программирование, Машинное обучение, Deep learning, Длиннопост, Qwen

Изображение взято из треда про адаптацию Квен под мобильные платформы:

Но по-настоящему Qwen 2.5 привлек внимание разработчиков, когда вышла коллекция Qwen 2.5 Coder. Бенчмарки показали, что 32 B версия этой модели может конкурировать с GPT-4o по написанию кода, а это очень интересно, притом что 32 миллиарда параметров вполне можно запустить на средней мощности видеокарте, и получить хорошую скорость генерации токенов.

Вообще какие приложения можно создавать с помощью новых моделей Qwen? Это конечно различные чатботы, но не только.

Разработчики говорят, что Qwen хорош для систем агентов.

Вот что написал недавно в Reddit один из них:

Qwen 2.5 и Qwen 2.5 Coder - перспективная коллекция LLM для систем агентов Искусственный интеллект, Программирование, Машинное обучение, Deep learning, Длиннопост, Qwen

Я длительное время использовал кастомный Chain-of-thoughts фреймворк с GPT-4, затем 4o.

Сегодня я развернул Qwen 2.5 14B и обнаружил, что его возможности вызова функций, Chain of Thoughts и следования инструкциям фантастические. Я бы даже сказал, лучше чем GPT 4/4o - для моих задач, во всяком случае

Кажется интересным не только то, что разработчик получил такую высокую производительность для сложных задач, требующих продвинутой логики, на  открытой LLM. Интересно и то, что для этого ему потребовались сравнительно небольшие мощности — ведь речь идёт о квантованной 14B модели:

Я использую одну видеокарту A40 для надёжности системы и высокой скорости генерации. Я выполнил установку через Ollama, взяв дефолтный квантованный Qwen 2.5 14B. A40 нужна для более высокой скорости, но я могу представить, что вам подойдёт и намного меньшая видеокарта для ваших задач

Мне нравится идея разработки агентских систем с помощью открытой модели на 14B параметров, для работы которой достаточно экономичной видеокарты A40 или даже менее мощной модели.

Агенты, вспомним, это GenAI приложения которые могут оперировать компьютером пользователя, взаимодействовать с другими программными компонентами. Для этого очень важна способность интегрироваться с разными API, вызов функций и логическое мышление модели.

По поводу логического мышления, традиционный подход — это Chain of Thoughts, особая стратегия промптинга. Она побуждает LLM строить пошаговые рассуждения, более эффективные для решения задачи и самовалидации решения на каждом шаге. Некоторые модели специально обучены для работы с таким промптом, например, GPT-4o1. Непонятно, обучали ли Qwen строить цепочки мыслей, но, как видим, разработчики указывают на высокую производительность модели в этом отношении.

Показать полностью 2
[моё] Искусственный интеллект Программирование Машинное обучение Deep learning Длиннопост Qwen
0
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии