Ученые предложили новый способ обнаружения первичных черных дыр — древних черных дыр, которые могли стать частью темной материи, составляющей большую часть Вселенной. Этот метод основан на излучении Хокинга — особом излучении, которое черные дыры испускают в зависимости от своей массы: чем меньше черная дыра, тем сильнее излучение.
Ранее ученые искали следы таких черных дыр в космическом фоновом излучении, но теперь предлагают ловить их, когда они проходят через нашу Солнечную систему. При этом внимание уделяется позитронам — частицам, которые легче всего обнаружить с помощью Альфа-магнитного спектрометра на Международной космической станции.
Модели показывают, что примерно раз в год такая черная дыра может проходить рядом с Землей, создавая заметные всплески позитронного излучения. Это позволит проводить прямые измерения и лучше понять, могут ли эти черные дыры составлять темную материю.
Кроме позитронов, ученые планируют искать и гамма-лучи, связанные с излучением Хокинга, что поможет охватить широкий диапазон масс — от небольших астероидов до крупных тел вроде Цереры.
Этот подход меняет стратегию поиска темной материи с пассивного наблюдения на активный поиск отдельных объектов рядом с нами. Если он сработает, мы сможем не только подтвердить существование первичных черных дыр, но и узнать больше об их количестве и массе — ключ к разгадке тайны темной материи во Вселенной.
Далеко за орбитой Плутона, на краю нашей Солнечной системы, находится загадочная карликовая планета Седна. Она движется по очень вытянутой орбите и делает полный круг вокруг Солнца примерно за 11 000 лет. Ученые хотят отправить к ней новую космическую миссию, используя современные технологии двигателей.
Седна — это не просто камень в космосе. Ее необычная орбита говорит о том, что она может быть частью внутреннего облака Оорта — области, где хранятся древние остатки нашей Солнечной системы. Изучение Седны поможет понять, как формировалась наша планетарная система и какие силы на нее влияли.
Поверхность Седны красноватая, что говорит о сложном составе, возможно, с органическими веществами. Там очень холодно — температура не поднимается выше -240°C. В 2075-2076 годах Седна пройдет ближайшую к Солнцу точку своей орбиты, но даже тогда будет очень далеко — примерно в 76 раз дальше Земли от Солнца, почти в три раза дальше Нептуна. После этого она снова уйдет в глубокий космос на тысячи лет.
В недавнем исследовании ученые рассмотрели два способа быстро добраться до Седны. Первый — использовать термоядерный двигатель, который сможет одновременно давать тягу и электроэнергию. Такой двигатель мощностью 1,6 МВт позволит добраться до Седны примерно за 10 лет с 1,5-летним разгоном.
Второй способ — использовать солнечный парус с новой технологией термической десорбции. Это значит, что солнечный свет нагревает специальную поверхность, и молекулы с нее отрываются, создавая тягу. Такой парус вместе с гравитационным маневром у Юпитера может добраться до Седны всего за 7 лет. Парус легче и не требует топлива, поэтому может непрерывно ускоряться, но он сможет только пролететь мимо Седны, а не выйти на орбиту.
Каждый из этих способов имеет свои плюсы и минусы. Термоядерный двигатель позволит долго изучать Седну, вращаясь вокруг нее, а солнечный парус даст быстрый пролёт и снимки, но без возможности детального исследования.
Обе технологии еще находятся в разработке и требуют больших усилий и инвестиций. Время на запуск миссии быстро уходит, и успех зависит от того, насколько человечество готово вкладывать в новые космические технологии и рисковать ради изучения дальнего космоса.
Новое исследование, опубликованное в журнале Nature Nanotechnology, раскрывает роль динамических нанодоменов в перовскитах на основе галогенида свинца — материалов, перспективных для солнечных элементов. Исследователи из Департамента химической инженерии и биотехнологии (CEB) показали, что поведение этих микроскопических структур влияет на эффективность и стабильность перовскитовых солнечных элементов.
Работа проводилась под руководством Милоша Дубаджича и профессора Сэма Стрэнкса в сотрудничестве с Имперским колледжем Лондона, UNSW, Университетом штата Колорадо, ANSTO и синхротронными центрами Австралии, Великобритании и Германии.
Понимание динамики нанодоменов позволит точнее настраивать свойства перовскитов, повышая производительность и долговечность солнечных элементов. Ранее изменчивость этих структур оставалась недостаточно изученной, а теперь открываются возможности для полного раскрытия потенциала перовскитов.
Милош Дубаджич отметил: «Управляя поведением нанодоменов, мы можем улучшить работу солнечных элементов и других оптоэлектронных устройств, расширяя границы эффективности преобразования энергии». Профессор Сэм Стрэнкс добавил: «Раскрывая секреты этих нанодоменов, мы ускоряем развитие перовскитовых солнечных технологий и делаем их более жизнеспособным решением для перехода к возобновляемым источникам энергии».
Исследование является частью более широкой работы по созданию эффективных и устойчивых энергетических решений с помощью материаловедения, направленных на решение глобальных задач в области возобновляемой энергии.
Исследователи из Института нанотехнологий (WPI-NanoLSI) Университета Канадзавы (Kanazawa University) представили небольшой отчет о том, как короткие пептиды линейно самоорганизуются на твердых поверхностях толщиной в атомы, таких как графит и MoS2.
Работа решает давнюю задачу материаловедения — понимание сложных, зависящих от последовательности взаимодействий пептидов с твердыми субстратами, а также ключевой роли локальных структур гидратации в формировании наноструктур. Это открывает новые возможности для интеграции биомолекул с передовыми материалами в биосенсорах и биоэлектронике.
Для практических биотехнологических устройств важно упорядочивать биомолекулы на неживых поверхностях. Специально разработанные пептиды способны самостоятельно организовываться в структурированные линейные кристаллы, совпадающие с атомной решеткой подложки.
Команда под руководством Айхана Юртсевера, Такеши Фукумы и Линхао Суна из Университета Канадзава совместно с учеными из Института науки Токио и компании DMXi Dentomimetix (США) провела детальное исследование процесса сборки пептидов на неорганических поверхностях. С применением современных визуализационных методов и компьютерного моделирования, возглавляемого Фабио Прианте и Адамом С. Фостером из Университета Аалто (Финляндия), они подчеркнули важную роль воды как растворителя.
В исследовании использовались короткие дипептиды с чередующимися аминокислотами — гидрофобным тирозином (Y) и гидрофильным гистидином (H). Изменяя число повторений YH (3, 4 и 5), ученые изучали формирование линейных кристаллических структур, ориентированных по двумерной кристаллической поверхности графита и MoS2.
Продвинутые 3D-атомно-силовые микроскопические измерения показали, что взаимодействие пептидов с водой формирует неоднородные гидратационные оболочки, окружающие структуры и создающие специфические участки связывания. Эти особенности важны для селективного распознавания молекул и взаимодействия с другими биомолекулами. Молекулярное моделирование подтвердило наличие водородных связей, стабилизирующих гидратационный слой.
Результаты открывают перспективы для рационального проектирования пептидных гибридных материалов с контролируемыми функциями, что важно для биофункционализации в биомедицине и нанотехнологиях. Упорядоченные пептидные решетки могут служить шаблонами для организации неорганических наночастиц с субнанометровой точностью, что позволит исследовать квантовые эффекты.
Кроме того, пространственное расположение боковых цепей пептидов может создавать каталитически активные участки, имитирующие природные ферменты, а также обеспечивать иммобилизацию биомолекул для изучения молекулярного распознавания и высокоэффективных каталитических интерфейсов в электрохимии.
В настоящее время исследователи продолжают изучать локальные структуры гидратации вокруг пептидов, связывающихся с твердыми поверхностями, чтобы глубже понять влияние гидрофобных и гидрофильных последовательностей на организацию воды и механизмы автоматического сбора пептидов на субстратах.
Антенна в виде усов торчит из аппарата Mars Reconnaissance Orbiter, который с 2006 года на орбите Марса. Это часть радара SHARAD, исследующего подповерхностные слои планеты.
Орбитальный аппарат NASA Mars Reconnaissance Orbiter (MRO), успешно работающий почти два десятилетия, освоил новые возможности управления ориентацией, что позволяет значительно расширить научные исследования Марса. Инженеры научили аппарат выполнять повороты (роллы) почти на 180 градусов, что открывает доступ к более глубокому зондированию поверхности и подповерхностных слоёв планеты.
В статье, опубликованной в журнале The Planetary Science Journal, описаны три таких масштабных манёвра, выполненных в 2023–2024 годах. Ранее MRO мог поворачиваться лишь до 30 градусов для наведения приборов на интересующие участки поверхности, однако теперь значительно увеличенный угол поворота позволяет радару SHARAD улучшить качество подповерхностных наблюдений.
SHARAD исследует слои на глубинах от полумили до двух километров, отличая горные породы, песок и лёд — важный ресурс для будущих миссий. Однако расположение антенн радара в хвостовой части аппарата создаёт помехи радиосигналам из-за конструктивных элементов, что ограничивает эффективность прибора. Большие роллы устраняют эти помехи, усиливая сигнал в десять и более раз и улучшая чёткость изображений.
Выполнение таких поворотов сопряжено с техническими сложностями: антенна связи временно отворачивается от Земли, солнечные панели — от Солнца, поэтому требуется тщательное планирование и расчёт энергопотребления. В связи с этим количество подобных манёвров ограничено одной-двумя операциями в год, однако инженеры работают над оптимизацией процесса.
Кроме того, прибор Mars Climate Sounder, изучающий атмосферу Марса и процессы формирования пылевых бурь и облачности, адаптировался к новым условиям после выхода из строя карданного подвеса. Теперь он использует стандартные повороты MRO для необходимых наблюдений и калибровок, интегрируя эти манёвры в ежедневное планирование.
Таким образом, благодаря освоению новых режимов ориентации MRO продолжает расширять научный потенциал, обеспечивая более глубокое и детальное изучение Марса, что важно для понимания его геологии, климата и ресурсов для будущих экспедиций.
Астрономы из Университета Нью-Мексико совместно с исследователями из США и других стран подтвердили существование новой экзопланеты, открытие которого стало возможным благодаря сотрудничеству с гражданскими учёными по всему миру.
Подробности находки изложены в статье, опубликованной в журнале The Astronomical Journal; ведущим автором выступила доктор наук Зара Эссак, а в числе соавторов — доцент Диана Драгомир.
Планета TOI-4465 b представляет собой газового гиганта, удалённого от Земли примерно на 400 световых лет. Она была впервые обнаружена космическим телескопом NASA Transiting Exoplanet Survey Satellite (TESS) как потенциальное событие одиночного транзита — кратковременного прохождения планеты на фоне своей звезды.
Для подтверждения существования планеты исследователям предстояло зафиксировать следующий транзит, который повторяется всего раз в 102 дня, то есть примерно трижды в год.
«Окна для наблюдений крайне ограничены. Продолжительность каждого транзита составляет около 12 часов, однако крайне редко удаётся получить 12 непрерывных часов тёмного и ясного неба в одном месте», — пояснила Эссак. «Дополнительные трудности связаны с переменчивой погодой, доступностью телескопов и необходимостью круглосуточного наблюдения.»
Чтобы преодолеть эти препятствия, была организована скоординированная международная кампания, охватившая 14 стран. В ней приняли участие 24 гражданских астронома из 10 государств, которые с помощью личных телескопов помогли зафиксировать следующий транзит. Их своевременный вклад дополнил данные профессиональных обсерваторий.
«Открытие и подтверждение существования TOI-4465 b не только расширяет наши познания о планетах отдалённых звёздных систем, но и демонстрирует, как увлечённые любители астрономии могут непосредственно влиять на передовые научные исследования. Это прекрасный пример силы гражданской науки, командной работы и важности глобального сотрудничества в астрономии», — отметила Эссак.
Помимо гражданских учёных, профессиональные астрономы — включая студентов — внесли вклад, проводя фотометрические наблюдения, измеряя изменения яркости звезды во время прохождения планеты, используя современную аппаратуру в признанных обсерваториях.
Ключевыми платформами, обеспечившими успешную реализацию глобальной кампании, стали Подгруппа 1 Программы последующих наблюдений TESS (TFOP SG1), сеть гражданской науки Unistellar и Рабочая группа по кандидатам в планеты с одиночными транзитами TESS (TSTPC).
«Эффективность данного сотрудничества опирается на продуманную инфраструктуру. Сеть Unistellar обеспечивает стандартизированное оборудование и алгоритмы обработки данных, что позволяет гражданским учёным вносить качественный вклад. TFOP SG1 служит международной координационной площадкой, объединяющей профессионалов и любителей, а также наблюдательные объекты. Рабочая группа TSTPC, возглавляемая профессором Драгомир, концентрирует экспертизу в области обнаружения и последующих наблюдений столь редких явлений», — подчеркнула Эссак.
TOI-4465 b — газовый гигант, чей радиус превышает радиус Юпитера примерно на 25 %, масса почти в шесть раз больше Юпитера, а плотность достигает почти трёхкратного значения. Путь планеты по орбите слегка эллиптичен, что приводит к диапазону температур от 375 до 478 Кельвинов (около 200–400 °F). TOI-4465 b является редким образцом гигантской планеты, сочетающей немалый размер, массу, плотность и умеренную температуру, занимая при этом достаточно малоизученную область в пространстве параметров радиуса и массы.
Долгопериодические газовые гиганты, подобные TOI-4465 b, могут служить связующим звеном между экстремальными «горячими юпитерами» — планетами, обращающимися вблизи своих звёзд — и холодными гигантами, известными нам по Солнечной системе.
«Это открытие особенно важно, поскольку экзопланеты с длительными периодами (более 100 дней) сложно обнаружить и подтвердить из-за ограниченности времени и ресурсов для наблюдений. Вследствие этого они недостаточно представлены в текущих каталогах экзопланет», — объяснила Эссак.
«Исследование таких планет помогает глубже понять процессы формирования и эволюции планетных систем в более умеренных условиях.»
Большие размеры и относительно прохладные температуры TOI-4465 b делают её перспективным объектом для будущих атмосферных исследований с помощью, например, Космического телескопа имени Джеймса Уэбба (JWST). Планета входит в число лучших долгопериодических экзопланет для спектроскопии собственного излучения, что позволит выявить ключевые характеристики её атмосферы.
Данная статья стала шестой публикацией в рамках проекта Giant Outer Transiting Exoplanet Mass (GOT “EM) survey — масштабного исследования, нацеленного на детальное изучение долгопериодических транзитных гигантских планет путем измерения их радиусов и масс посредством скоординированных последующих наблюдений транзитов и радиальных скоростей.
В понедельник, 23 июня, в Чили официально открыли новую астрономическую обсерваторию, названную в честь выдающейся американской астрономички Веры Рубин, которая внесла значительный вклад в понимание темной материи. Это современное научное учреждение оснащено передовыми телескопами и камерами, способными вести глубокие и широкоугольные наблюдения ночного неба с высоким разрешением и большой скоростью.
Уже на следующий день после открытия учёные получили первые снимки, продемонстрировавшие высокое качество и детализацию новых инструментов. Однако главным достижением стали результаты первых двух суток наблюдений: обсерватория обнаружила 2104 новых астероида, ранее неизвестных астрономам. Среди них были выделены семь околоземных объектов, представляющих особый интерес, поскольку они могут потенциально пересекать орбиту Земли и требуют постоянного мониторинга для оценки возможной угрозы. Также были найдены 11 троянских астероидов Юпитера — космические тела, находящиеся в стабильных точках Лагранжа, движущиеся вместе с планетой. Кроме того, астрономы зарегистрировали девять транснептуновых объектов — мелких тел, расположенных за орбитой Нептуна, которые помогают лучше понять структуру и эволюцию Солнечной системы.
Учёные отмечают, что потенциал обсерватории огромен: за несколько лет работы она способна обнаружить до пяти миллионов новых астероидов. Это количество в пять раз превышает суммарное число открытий всех астрономов за последние два столетия, что свидетельствует о революционном скачке в возможностях наблюдений и обработки данных. Такая масштабная инвентаризация малых тел позволит существенно расширить наше понимание происхождения и динамики Солнечной системы, а также повысить безопасность планеты.
Кроме поиска астероидов, обсерватория Веры Рубин создаёт уникальные условия для обнаружения межзвёздных объектов — редких космических тел, прибывающих из других звездных систем. Примерами таких объектов являются загадочный астероид Оумуамуа и комета Борисова, которые вызвали большой интерес учёных из-за необычных траекторий и физических свойств. Благодаря высокой чувствительности и широкому полю зрения новый инструмент позволит фиксировать подобные объекты быстрее и с большей точностью, открывая новые горизонты в изучении межзвёздной среды и процессов, происходящих за пределами нашей Солнечной системы.
Таким образом, обсерватория имени Веры Рубин знаменует собой новый этап в астрономии, объединяя передовые технологии и научные амбиции для расширения знаний о космосе и обеспечении безопасности Земли.
Учёные из Университета Райса достигли значительного прогресса в области наноматериалов, раскрывая механизм формирования упорядоченных жидкокристаллических фаз из нитей нитрида бора (BNNT) в водных растворах. Эти нанотрубки известны своей высокой прочностью, термостойкостью и диэлектрическими свойствами. Результаты исследования, опубликованные в журнале Langmuir, были настолько впечатляющими визуально, что украсили обложку выпуска.
Эта красивая иллюстрация не только демонстрирует эстетическую сторону науки на наноуровне, но и отражает суть нового масштабируемого метода выравнивания BNNT в водных дисперсиях с использованием доступного поверхностно-активного вещества (ПАВ) — натрия дезоксихолата (SDC), который является желчным солевым ПАВ. Это открытие открывает перспективы создания новых материалов для аэрокосмической отрасли, электроники и других сфер.
По словам профессора Маттео Паскуали, ведущего автора исследования, работа представляет большой фундаментальный интерес, поскольку демонстрирует возможность использования BNNT в качестве модельной системы для изучения инновационных нанопалочных жидких кристаллов. Главное преимущество BNNT заключается в их относительной прозрачности и хорошей излучаемости с помощью видимого света, в отличие от углеродных нанотрубок, которые образуют тёмные жидкие кристаллы и сложны для наблюдения световой микроскопией.
Для первого автора, Джо Хури, исследование стало больше, чем просто научной работой. Обучавшийся архитектуре в Сирии, а затем переключившийся на химическую инженерию после переезда в США, он с художественным взглядом заметил важные детали. Во время обычного этапа очистки, наблюдая фильтрацию воды из дисперсии, он заметил, что оставшийся материал загустевает и под поляризованным светом начинает излучать свечение — признак формирования жидких кристаллов.
Воодушевившись этим наблюдением, исследователи предположили, что увеличение концентрации SDC может стимулировать самособирание BNNT в упорядоченные нематические фазы. Чтобы проверить гипотезу, они провели серию экспериментов с различными концентрациями SDC в дисперсиях BNNT. С помощью поляризационной микроскопии был визуализирован переход от хаотичных состояний к частично и полностью упорядоченным жидкокристаллическим фазам. Криогенная электронная микроскопия подтвердила высокое разрешение и выравнивание нанотрубок.
Ключевым достижением стало создание первой комплексной фазовой диаграммы BNNT в растворах ПАВ — прогностической карты, позволяющей предсказывать поведение BNNT при различных соотношениях компонентов. По словам Хури, ранее такие вопросы не исследовались так полно: предшествующие работы ограничивались низкими концентрациями BNNT или недостаточным количеством ПАВ. В их исследовании показано, что при правильном соотношении можно индуцировать жидкокристаллическое упорядочение без использования агрессивных химикатов и сложных методик.
Кроме изучения фазовых переходов, команда разработала простой и воспроизводимый способ преобразования дисперсий в тонкие, хорошо выровненные плёнки BNNT. Используя специализированный нож для сдвига материала на стеклянной подложке, они создали прозрачные и прочные плёнки, которые идеально подходят для теплового управления и усиления конструкций — например, для более лёгких и термостойких компонентов электроники или авиационной техники. Рентгеновская дифракция и электронная микроскопия подтвердили аккуратное наномасштабное ориентирование нитей.
Хури подчеркнул, что нематическая упорядоченность в растворе сохраняется и переносится в твёрдую фазу, что открывает масштабируемую платформу для материалов следующего поколения. Исследование прокладывает путь для новых разработок в области лизотропных жидких кристаллов на основе нанопалочек. Метод прост и не требует применения сильных кислот или жёстких условий, что делает его доступным для лабораторий по всему миру. Перспективы охватывают как фундаментальную физику, так и коммерческую инженерную практику.
Паскуали отметил, что это только начало. Благодаря созданной карте маршрута можно тонко настраивать выравнивание BNNT под конкретные задачи, создавая принципиально новый класс функциональных наноматериалов. Он также поделился, что красота полученных изображений завораживает: «Когда Джо прислал варианты для обложки, я почувствовал, словно смотрю на картины Дали или Ван Гога. Обложка могла бы быть башней Барад-дур из ‘Властелина колец’, исполненной в стиле сюрреализма.»
Хури выразил благодарность команде и наставникам, включая Паскуали; Анхеля Марти — профессора и заведующего кафедрой химии, профессора биоинженерии и материаловедения и наноинженерии в Райсе; Чеола Парка из космического центра NASA Langley; Линдси Скэммелл из BNNT LLC; Йешаяху Талмона из Техниона — Израильского технологического института и других, чья поддержка сделала это исследование возможным.